A Robot Team for Surveillance Tasks: Design and Architecture

Sascha A. Stoeter*, Paul E. Rybski, Kristen N. Stubbs, Colin P. McMillen,
Maria Gini, Dean F. Hougen, Nikolaos Papanikolopoulos
Department of Computer Science and Engineering, University of Minnesota, U.S.A.

Reduced cost of robotic hardware enables the use of teams of robots instead of a single device. Multi-robot
approaches promise faster results and more robust systems as each individual robot becomes dispensable. Given
higher numbers of robots, writing dependable control software becomes more complex and thus more expensive.
Consequently, a software architecture that is readily applied to new missions becomes essential. In the following,
an architecture for distributed control of a team of heterogeneous mobile robots is introduced. Design as well as
implementation details are presented. A distinguishing feature of the architecture is its versatility in handling
resources. An example application for a surveillance task is discussed.

Keywords: multiple robots; software architecture; surveillance applications; resource allocation

1. Introduction

With unit costs dwindling, multi-robot teams
are being used more widely. As a considerable
number of problems lend themselves to divide-
and-conquer approaches, teams of robots are an
obvious choice to increase performance. For in-
stance, an area could be subdivided into multi-
ple parts that are assigned to different robots.
Robots would then operate in their portions in
parallel, accomplishing the task faster. Multi-
ple robots also provide for redundancy that might
save a mission from complete failure. If a robot
malfunctions, its task could be taken over by an-
other nearby robot. This is especially true for
homogeneous robot teams. Heterogeneous teams
could also benefit from a graceful degradation of
performance instead of failing outright.

Writing control software for mobile robots is
a non-trivial task due to the need of operating
in noisy and cluttered environments. Additional
complexity is introduced by the need for robots
to communicate to each other over a wireless net-
work. This impose constraints on the bandwidth,
maximum distance between robots, and requires
error correction. Additional planning must be in-
troduced to effectively control robots with het-
erogeneous capabilities. As discussed by Coste-
Maniere and Simmons [7], a good architecture is

vital to the construction of working robotic sys-
tems.

We propose an architecture for multi-robot
control that treats a distributed network of robots
as a set of dynamic resources. Robot control
is accomplished through a hierarchical behavior
tree, which operates across a location-transparent
wireless network. The entire system is designed
to be extremely modular, allowing for rapid ad-
dition of resources and behaviors to create new
missions.

The remainder of this paper is organized as fol-
lows. An overview of related work is given in the
next section. Section 3 describes our heteroge-
neous robotic team. The software architecture is
presented in detail in Sections 4 and 5. The paper
concludes with a list of future research directions.

2. Related Work

Researchers have taken numerous approaches
to collaborative robot control. Cao et al. deserve
credit for attempting the categorization of differ-
ent architectures in the cooperative, multi-robot
domain [6].

There has been a decade and a half of research
aimed at providing robots with a behavioral or
task-based decomposition of the control system,
since Brooks introduced it as an alternative to

the traditional functional approach [4]. The ap-
plication of behavior-based robotics to groups of
robots has been explored extensively in the latter
half of the 1990s (e.g., [15]) and architectures for
cooperative control have recently been introduced
(e.g., [20]). Much work is focused on how differ-
ent behaviors have to be combined to achieve a
desired effect that solves a given problem. Pro-
posed solutions include hard-coded or learned
weights [17]. Attempts have also been made to
analytically determine the minimum information
requirements for solving a task [9] and at auto-
matic generation of robot teams [18]. However,
most of these systems have not tackled the prob-
lems of distributed collaborative behaviors and
distribution of resources across robots.

The idea of splitting behaviors into sensing,
computing, and acting across multiple physical
robots has been approached by treating a whole
collection of robots as a single generalized vehi-
cle [22]. This allows appropriate sensors, com-
putational resources, and actuators to be chosen
for each task without requiring them to all come
from the same physical robot.

KAMARA [14] is a true collaborative behav-
ior architecture which has been implemented on
the Karlsruhe Autonomous Robot, which con-
sists of two manipulator arms with several sensing
components all mounted on a mobile base. The
distributed and decentralized modes of operation
are adequate for independent operations of the
two manipulator arms and mobile base, but lack
the coordination and communication needed for
a larger group of robots.

The MARTHA project by Alami et al. deals
with coordinating a large number of mobile
robots in a structured environment for shipment
missions [1]. The robots can communicate with
each other and with a central control station that
issues jobs. Both a topological and a geometrical
map have to exist. Efforts are made to resolve
deadlocks locally, but for a large fleet that oper-
ates in a small area, the system becomes central-
ized. The cooperation is limited to avoiding the
other robots. Similarly, Brumitt et al. present
a method for multi-robot path-planning executed
on a distributed system [5]. This work requires
accurate pose estimation. Wang et al. propose

adding extra space to the environment for resolv-
ing deadlocks thus circumventing the need for a
central planner altogether [25].

Blum proposes a hierarchical control architec-
ture named OSCAR that utilizes modules as
reusable software components [3]. Modules en-
capsulate resources and processing entities. They
can be grouped into multi core modules that can
be executed on different computers. A control
module implemented as a state machine activates
required modules. The architecture has been used
to control a single mobile robot in an exploration
mission.

Our architecture has some similarities
with CAMPOUT [19], a distributed hybrid-
architecture based on behaviors. The major
difference is that we focus on resource allocation
and dynamic scheduling, while CAMPOUT is
mostly designed for behavior fusion. We rely on
CORBA [16] for distributed processing, while in
CAMPOUT each robot runs an instance of the
architecture and uses sockets for communication
with other robots.

Inter-robot communication is primarily
achieved with wireless networks as exemplified
by the majority of the presented architectures. It
is assumed that direct communication between
any pair of communication endpoints is available.
Asama et al. take a different approach. They
use intelligent data carriers which are distributed
in the environment by the robots and serve as
information kiosks [11,13]. Typically, local in-
formation about the immediate neighborhood is
saved onto them. Robots passing by can read
and update the stored information only within
the device’s vicinity.

Resource allocation and dynamic scheduling
are essential to ensure robust execution. Our
work focuses on dynamic allocation of resources
at execution time, as opposed to analyzing re-
source requests off-line, as in [2,10], and modify-
ing the plans when requests cannot be satisfied.
Our approach is specially suited to unpredictable
environments, where resources have to be allo-
cated in a dynamic way that cannot be predicted
in advance. We rely on the wide body of algo-
rithms that exists in the area of real-time schedul-
ing [23] and load balancing [8].

Fig. 1. Closeup of a Scout robot. The foot required
for jumping is located on the robot’s far side.

3. Hardware

Our heterogeneous robotic team consists of two
types of robots. The first type is a larger, heavy-
duty robotic platform called the Ranger. It is
used to transport and deploy a number of small,
mobile sensor platforms called Scouts, the second
type of robot, into the environment. Together,
the Scouts and Rangers form a hierarchical team
capable of carrying out complex missions in a
wide variety of environments. A team is cre-
ated by pairing several Scouts with one or more
Rangers. Because of the Scout radios’ range lim-
itations, a Ranger has to remain close by to act
as a proxy. Proxy processing allows the Scouts to
engage in visual servoing — an activity they would
never be able to accomplish with their own lim-
ited computational resources.

3.1. Scouts

Scouts have a cylindrical shape, 40 mm in di-
ameter and 110mm in length (see Fig. 1). A
Scout moves using a unique combination of lo-
comotion types. It can roll using the wheels
mounted on both ends of its body, and jump us-
ing a spring mechanism (also known as the foot).
Rolling allows for efficient traversal of smooth sur-
faces, while jumping allows Scouts to operate in

uneven terrain and pass over obstacles.

The Scouts act as the mobile eyes and ears of
the team. Their electronics include transmitters
and receivers, microcontrollers, magnetometers,
and tiltometers. In addition, they have a modular
sensor payload which can carry a miniature video
camera with an optional pan-tilt unit and video
transmitter, a microphone, a vibration sensor or
a gas sensor. More details on the hardware can
be found in Hougen et al. [12].

3.2. Rangers

The Rangers are based on the ATRV-Jr.™
platform from iRobot (see Fig. 2). A single
Ranger can carry a payload of roughly 25kg.
With a battery life of 3 to 6 hours (depend-
ing on terrain and load), the maximum range is
about 20km. The Ranger is customized with a
Scout launcher that includes a magazine, Scout
communication hardware, and a video camera.
The Rangers are equipped with on-board per-
sonal computers that have video capture cards
allowing them to process images from their own
camera as well as from the cameras mounted on
the Scouts.

Fig. 2. The Ranger with a custom-built magazine for
ten Scouts.

The Scout launcher allows the Ranger to shoot
Scouts through windows or over obstacles that
the Ranger could not itself surmount (see Fig. 3).
The Ranger can deploy up to ten Scouts in any
order from its launcher before needing to be
reloaded. With control over the launch angle and
propulsive force, a Scout can be launched up to
30m.

(a) mid-flight

(b) breaking window

Fig. 3. Deployment of a Scout from a Ranger. The
Scout is enclosed in a padded shell for protection from
the impact of hitting the window and the floor.

4. Design Goals of the Software Architec-
ture

The goal of the control software is to pro-
vide distributed, fault-tolerant management of all
available resources to fulfill the mission objec-
tives. Additionally, mission design time is to be
minimized while resources should be utilized effi-
ciently.

The software architecture is composed of four
major subsystems as depicted in the UML dia-
gram in Fig. 4. The Mission Control is the brain
of the system. It consists of layers of increas-
ingly simple behaviors that execute the desired

—

«subsyst em»
Resour ce Managenent

1
] «subsyst em»
«subsyst em» |~ Backbone
User Interface

Operator |
«subsyst en»
M ssion Control

Fig. 4. The architecture’s major subsystems and user
interaction.

mission. The Resource Pool provides the behav-
iors with priority-managed, shared access to phys-
ical hardware as well as software resources such as
maps. Humans interact with the system through
the User Interface. The Backbone binds the other
subsystems together.

4.1. User Interface Subsystem

Humans access the system through the User
Interface. In the off-line mission design phase,
this subsystem provides tools to allow the user
to construct missions. Throughout the entire dis-
tributed system, many components, i.e. resources
and behaviors, are at the mission designer’s dis-
posal. Ideally a designer is offered prefabricated
components that can be tied together easily to
form a new mission. While the designer must cer-
tainly be aware of their functional characteristics,
the system should hide lower-level details such as
their execution location unless such information
is requested by the designer. After all, informa-
tion about the exact location of components is
generally not available until run-time. Computa-
tional resources can vary from one run of mission
to the next, and computers may become inoper-
able during mission execution.

During run-time, requirements of the User In-
terface are highly mission-dependent. For certain
scenarios, such as rescue operations, the interface
must be interactive. In other scenarios, such as
planetary exploration, the interface will be used
mostly for providing occasional status since real-

time human response is not possible.

Applications such as search and rescue opera-
tions in urban terrain do not allow for cumber-
some user interfaces. In a potentially messy, fast-
paced situation, the users must be presented with
an intuitive and foolproof user interface that takes
as little of their attention away from the danger-
ous situation surrounding them as possible. A
simple prototype of a user interface is shown in
Fig. 5. It consists of a personal digital assistant
(PDA) as the command center, a monitor to view
the robots’ video transmissions, and a backpack
filled with an antenna, a tuner, and a power sup-
ply. The monitor and the PDA can be attached at
any position on either sleeve of the operator with
velcro, leaving the hands free to carry additional
items.

Fig. 5. Operator wearing prototype user interface.
Commands can be issued via the PDA while the LCD
monitor is used to view video transmitted from a
Scout.

4.2. Mission Control Subsystem

The Mission Control hosts prioritized behav-
iors that make up a solution to the mission. A be-
havior is defined as a functional unit that works
on achieving a well-defined task. A mission is
modeled as such a behavioral component. A
complex top-level task (e.g., Find Intruders in a
compromised building) is recursively decomposed
into simpler behaviors until elementary behaviors
(e.g., Drive Forward) are reached. Behaviors can
be executed sequentially or in parallel. Compos-
ite behaviors can be created using existing behav-
iors.

4.8. Resource Pool Subsystem

The Resource Pool maintains the interfaces to
behavior resources which are directly requested
for use by behaviors. Such behavior resources
are usually specific pieces of hardware (e.g.,
framegrabbers), but radio frequencies or maps of
the environment can also be used. This should
not be confused with system resources, such as
available CPU time or memory, to which behav-
iors have only implicit access. For notational sim-
plification, the term resources denotes behavior
resources unless otherwise specified.

To achieve efficient resource usage, behaviors
are encouraged to request only that portion of
a resource’s capacity that they need to success-
fully execute their work. The remaining portions
are then still available to other behaviors. Ac-
cess to a resource by a behavior may also be lim-
ited by other constraints. A robot may have the
constraint to not travel beyond a certain distance
from a landmark, but may move freely within that
boundary. The Resource Pool provides for

a. resource subscription to allow behaviors to
request access to resources,

b. access control to coordinate the utilization
of shared resources,

c. preallocation of resources to behaviors to
ensure their availability when needed,

d. constraints monitoring to watch for re-
source control violations, and

e. constraints enforcement to take control over
resources and resolve conflicts.

4.4. Backbone Subsystem

The Backbone ties the other subsystems to-
gether. It is the responsibility of the Backbone
to enable the components of the system to work
seamlessly over all allocated machines. It also
tries to balance system resource usage to avoid
bottlenecks. The Backbone provides for

a. component placement to start components
on a specified platform,

b. location transparency of components over
all platforms to ease addressing,

c. communication among the subsystems,

d. location information of both running and
available components,

e. hot-plugability to allow for run-time addi-
tion and removal of components,

f. system load monitoring to report on the
workload of the system resources,

g. load balancing to spread the workload
evenly over the available system resources,

h. redundancy for fault-tolerance, and

i. component migration from one computer to
another.

5. Implementation

At present, only a limited number of the design
goals (a—b from the Resource Pool and a—g from
the Backbone) are implemented with the remain-
ing to follow after initial proof of concept.

The system relies extensively on CORBA [16]
and XML [26] in order to achieve a high de-
gree of flexibility while keeping the code portable.
All entities in the system are registered with a
CORBA name service and can therefore be eas-
ily addressed. XML documents all components
(i.e. their name, parameters including types and
default values, and a human readable textual de-
scription) as well as missions and static depen-
dencies among the hardware.

5.1. The Startup Services

In order to launch a mission, a number of core
system services must be in place. The first service
is the Distributed Robotics Daemon, the master
startup service, which runs on each of the com-
puters that will take part in a mission. When con-
tacted by a User Interface, it launches a CORBA
environment to serve the behaviors. The second
service, the Component Database, keeps track of
all components available to the system storing
names, locations, types, and multiplicity infor-
mation, i.e. the number of instances of each com-
ponent allowed to exist simultaneously. Compo-
nent Creators, the third service, are started on
all machines. On mission startup, each Compo-
nent Creator is responsible for determining the
available components on its host and passing that
information along to the Component Database.
While the mission is running, the Component
Creator serves requests for launching components
and registering them with the Name Service. A
Load Balancer receives periodic status updates
from Load Reporters instantiated on all hosts.
This information is used to start new components
on the least used machine with respect to some
metric. The final service, the Component Placer,
is the global service to start components and saves
clients from having to know what hosts to run
components on.

Fig. 6 shows a typical startup sequence for a
component C. When the Component Placer (CP)
receives a request from a client (CPC) such as
a behavior, it queries the Component Database
(CD) for a host that supports execution of the
component. A specific host is picked by the Load
Balancer (LB) which has knowledge about each
participating machine’s resource usage such as
processor load and memory utilization. The host
selection can be influenced through policies that
determine the importance of the resources. The
Component Placer then creates a unique CORBA
name for the component and instructs the Com-
ponent Creator (CC) on the chosen host to start
it. The component initializes and registers itself
first with the Name Service (NS) and then re-
ports to the Component Placer. The Component
Placer returns either the component’s CORBA

:.CPC :CP

— name:=start(C) :

:.CD

:CC

{location = host }

hosts:=getHosts(C),_ !

host:=getHost(hosts,palicy) .

< tinmeout

1

F name::getName():

start(C,name) |

. |
available(name),

8

>|j«create»
{Iocam host }

| Dregister(name)

| use()

- ------ T getReference(name)!
I

.
>

T =|_'_|
| |

Fig. 6. Interaction diagram showing the component startup sequence.

name to the client or a failure condition in the
case of a timeout. Timeouts can occur when a
component could not be started or the network
connection has been lost. At last, the client can
access and use the new component.

5.2. Access to Resources

The Resource Controller Manager manages
components called Resource Controllers (RCs)
and Aggregate Resource Controllers (ARCs).
RCs provide standard CORBA interfaces to sin-
gle hardware or software resources. Because
multiple RCs must often be used simultaneously
when controlling something complex like a robot,
ARGC:s are used as higher-level interfaces to groups
of RCs (see Fig. 7). Behaviors cannot access RCs
directly and are given access to ARCs by the Re-
source Controller Manager. An ARC serves only
a single behavior.

ARC RC

Behavior

Fig. 7. Class diagram showing the association of
Behaviors, Aggregate Resource Controllers, and Re-
source Controllers.

behaviorl:Behavior behavior2:Behavior behavior3:Behavior

priority = 1 priority = 1 priority = 2
| arcl:ARC | arc2:ARC arc3:ARC
| rc2:RC | | rc3:RC | | rc4:RC |

Fig. 8. Example of behaviors accessing resources.

Some RCs can be used simultaneously by mul-
tiple ARCs while others cannot. When an ARC
requests an RC from the Resource Controller
Manager, it specifies a time slice and, in the case
of a sharable RC, designates a quantity. ARCs
can share an RC unless the sum of their requested
quantities exceeds a maximum allowed capacity.
Conflicts arising from concurrent requests are re-
solved by granting access based on the ARCs’ pri-
orities. Each ARC inherits its controlling behav-
ior’s priority. In the example shown in Fig. §,
each of the three behaviors is trying to obtain ac-
cess to the non-sharable RC rc2 through its ARC.
The priority 1 behaviors will be able to share the
RC in a round-robin fashion while the priority 2

behavior will block until the priority 1 behaviors
release it.

Each behavior is programmed with the knowl-
edge of what ARCs it needs and what kinds of
RCs each ARC controls. This allows behaviors
to instantiate a particular ARC by parameteriz-
ing it on a list of RCs. To specify this informa-
tion, behaviors must be aware of dependencies
among pieces of hardware. Since the users can
change the hardware between runs, the Static De-
pendency Database stores the names, locations
and startup options for the RCs available in the
system and provide this information to the be-
haviors.

1. rc:=query(...
:Behavior query(... :SDD

¥ 2: configure(rc,...)
A 3.2.1: available()

¥ 4: use()
-« 3.2: available()
arc2:ARC ‘RC

arcl:ARC

A 3.1: unavailable()

¥ 2.1: authorize(rc,duration)

:RCM

— - 3[arc2’s time slot reached]: switch(arc2)
-~ 2.1.1: schedule(rc)

Fig. 9. Behavior requesting access to an ARC.

When a behavior is initialized, its first task is to
access all the ARCs that it will need to run. Fig. 9
illustrates an example of this for a single RC. The
component startup as shown previously in Fig. 6
is omitted for simplicity. The behavior first con-
tacts the Static Dependency Database (SDD) to
select the particular pieces of hardware from a set
of available resources for the ARCs it needs. Then
it instructs the Component Placer to instantiate
the desired ARCs and configures them with the
chosen RCs. Each ARC requests its RCs to be
scheduled by the Resource Controller Manager
(RCM) for a required minimum runtime. This

duration reflects the smallest time interval neces-
sary for the behavior to achieve a subgoal. Un-
less the requested RCs are already present in the
system, the Resource Controller Manager has the
Component Placer start them and a new sched-
ule is created. At the ARC’s scheduled time, the
Resource Controller Manager instructs the RCs
to serve the new ARC upon which they break
their ties with the presently served ARC and sig-
nal their availability to the new one. The ARC,
in turn, informs its controlling behavior that it is
now ready to serve.

5.8. Mission Creation and Startup

The user can start a mission once all core ser-
vices are in place. This is done by starting the
top-level behavior of the mission. Behaviors are
organized in a hierarchical structure and so the
higher-level behaviors activate lower level behav-
iors as needed. Mission designers need only spec-
ify a partial order plan; linearization is accom-
plished by the system. Complex behaviors can
be built from simpler, existing behaviors. Parent
behaviors request the creation of their children
through the Component Placer and set their pa-
rameters after successful instantiation. Some pa-
rameters are required, while others are optional.
Named variables are used to obtain a common in-
terface to allow for run-time addition of new be-
haviors. The parent behavior then activates the
children and awaits their termination. It must
also react to an asynchronous shutdown message
from its parent. In that case, it recursively shuts
down its children.

6. A Walk through an Example Mission

A scenario we have demonstrated requires the
robotic team to quickly explore a building and
set up a surveillance sensor network. FExperi-
mental details are reported in Rybski et al. [21].
In this scenario, a Ranger moves into a build-
ing and searches for rooms into which to de-
ploy Scouts, using control software to navigate
autonomously along a corridor and to find open
doors (see Stoeter et al. [24] for details). The
Ranger then launches a Scout into each room.
The Scouts investigate their rooms independently

Corridor Surveillance

—> Room Surveillance

/ request Ranger,

request Scout

Deploy Scout

/ rel ease Ranger

*—> Find New Door

][door det ect ed]

Position Scout

Align Ranger

e—>! Traverse Corridor |
|

- Launch Scout
Detect Door

Monitor Room

Fig. 10. Example corridor surveillance mission. The mission is decomposed into manageable behaviors.

(by transmitting images to the Rangers for proxy
processing), move toward dark corners in which
they can hide, turn to watch their area, and wait
for people to move through the environment.

The mission is depicted in Fig. 10. A box
corresponds to a behavior; arrows denote transi-
tions between behaviors. For visual clarity, error
transitions are excluded. The diagram shows the
structural decomposition of the top level behavior
Corridor Surveillance into simpler behaviors. The
diagram also shows the behavioral aspects of the
system, i.e. the flow of control from one behav-
ior to the next. A transition is triggered when
its condition becomes valid. This happens when
a composite behavior is entered and its default
transitions (as marked with dots at their origins)
are activated, when the source behavior termi-
nates, or when the transition condition (as shown
next to the arrow in brackets) evaluates to true.
When a transition is taken, first the source be-
havior is shut down, then the optional transition
action (as denoted by a slash in the figure) is ex-
ecuted, and finally the destination behavior is ac-
tivated.

Note that behaviors can execute in parallel as
indicated by dashed lines for aggregated behav-

iors or by a multiplicity range next to a behavior’s
name. For instance, all three children behaviors
of Find New Door run concurrently. Similarly,
several Room Surveillance behaviors could be ac-
tive at the same time.

At startup, Corridor Surveillance instantiates all
its children, i.e. as many Room Surveillance be-
haviors as there are Scouts available for the mis-
sion. Each one tries to subscribe to a Ranger.
If just a single Ranger resource is available in
the system, only one Room Surveillance behav-
ior can proceed while the remaining sleep until
the Resource Controller Manager is able to fulfill
their request. With multiple Rangers, the system
would automatically grant access to more behav-
iors, and pieces of the mission could continue in
parallel. This mechanism frees the mission de-
signer from explicitly synchronizing resource ac-
cess. Once in control of a Ranger, the behaviors
use the Static Dependency Database to subscribe
to a Scout that is stored in that Ranger’s maga-
zine.

When Find New Door is activated, it creates a
map that it makes available to all three of its chil-
dren. This is the only way for behaviors to share
information, as they are unaware of each other’s

10

presence. When Detect Door terminates success-
fully, Find New Door shuts down the remaining
two children and activation passes to Align Ranger
to obtain a good launching position and then to
Launch Scout. After the Scout has been deployed,
Find New Door no longer requires a Ranger and
thus frees the resource. At this point, the Re-
source Controller Manager hands the resource
to another instance of Room Surveillance. The
Scout is directed to a good location using visual
servoing and subsequently begins monitoring the
room for trespassers.

7. Future Work

Future work includes extensions of the system
and more thorough testing. First, the remaining
design goals will be tackled. The most interesting
and challenging parts promise to be the compo-
nent migration at run-time and the incorporation
of dynamic constraints enforcement. The latter
will free mission designers and component writ-
ers from a large amount of manual constraints-
checking necessary at present, which is both ex-
pensive and error prone. Second, the system will
be tested on a variety of different missions. We
intend to develop solutions to a number of well
studied problems and compare our system per-
formance. We plan on exploring the unique op-
portunities offered by our robotic team.

Acknowledgement

This material is based upon work supported
by the Defense Advanced Research Projects
Agency, Microsystems Technology Office (Dis-
tributed Robotics), ARPA Order No. G155, Pro-
gram Code No. 8H20, issued by DARPA/CMD
under Contract #MDA972-98-C-0008.

[1] R. Alami, S. Fleury, M. Herrb, F. Ingrand,
and F. Robert. Multi-robot cooperation in
the MARTHA project. IEEE Robotics and
Automation Magazine, pages 36-46, Mar.
1998.

[2] E. M. Atkins, T. F. Abdelzaher, K. G. Shin,
and E. H. Durfee. Planning and resource
allocation for hard real-time, fault-tolerant

[10]

[11]

plan execution. Autonomous Agents and
Multi-Agent Systems, 4(1/2), Mar. 2001.

S. Blum. OSCAR - Eine Systemarchitek-
tur fiir den autonomen, mobilen Roboter
MARVIN. In R. Dillmann, H. Wé6rn, and
M. von Ehr, editors, Proc. of Autonome
Mobile Systeme, Informatik aktuell, pages
218-230, Karlsruhe, Germany, Nov. 2000.
Gesellschaft fiir Informatik, Springer.

R. A. Brooks. A robust layered control
system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(1):14-23,
Mar. 1986.

B. L. Brumitt and A. Stentz. GRAMMPS:
A generalized mission planner for multiple
mobile robots in unstructured environments.
In Proc. of the IEEE Int’l Conference on
Robotics and Automation, pages 1564-1571,
Leuven, Belgium, May 1998.

Y. U. Cao, A. S. Fukunaga, and A. B.
Khang. Cooperative mobile robotics: An-
tecedents and directions. Autonomous
Robots, 4(1):7-27, Mar. 1997.

E. Coste-Mariere and R. Simmons. Archi-
tecture, the backbone of robotic systems.
In Proc. of the IEEE Int’l Conference on
Robotics and Automation, pages 67-72, San
Francisco, CA, Apr. 2000.

G. Cybenko. Dynamic load balancing for dis-
tributed memory multiprocessors. Journal
of Parallel Distributed Computing, 7(2):279—
301, 1989.

B. R. Donald. On information invariants in
robotics. Artificial Intelligence, 72(1-2):217-
304, Jan. 1995.

E. H. Durfee. Distributed continual plan-
ning for unmanned ground vehicle teams. AJ
Magazine, 20(4):55-61, 1999.

T. Fujii, H. Asama, T. Fujita, Y. Asakawa,
H. Kaetsu, A. Matsumoto, and I. Endo.
Knowledge sharing among multiple au-
tonomous mobile robots through indirect

[13]

[14]

[15]

[16]

[18]

communication using intelligent data carri-
ers. In Proc. of the IEEE Int’l Conf. on Intel-
ligent Robots and Systems, pages 1466-1471,
1996.

D. F. Hougen, S. Benjaafar, J. C. Bonney,
J. R. Budenske, M. Dvorak, M. Gini, D. G.
Krantz, P. Y. Li, F. Malver, B. Nelson,
N. Papanikolopoulos, P. E. Rybski, S. A.
Stoeter, R. Voyles, and K. B. Yesin. A minia-
ture robotic system for reconnaissance and
surveillance. In Proc. of the IEEE Int’l Con-
ference on Robotics and Automation, pages
501-507, San Francisco, CA, U.S.A., Apr.
2000.

D. Kurabayashi and H. Asama. Knowl-
edge sharing and cooperation of autonomous
robots by intelligent data carrier system.
In Proc. of the IEEE Int’l Conference on
Robotics and Automation, pages 464-469,
San Francisco, CA, U.S.A., Apr. 2000.

T. C. Lueth and T. Laengle. Task descrip-
tion, decomposition, and allocation in a dis-
tributed autonomous multi-agent robot sys-
tem. In Proc. of the IEEE Int’l Conf. on
Intelligent Robots and Systems, volume 3,
pages 1516-1523, Munich, Germany, Sept.
1994.

M. J. Matarié. Issues and approaches in
the design of collective autonomous agents.
Robotics and Autonomous Systems, 16:321—
331, Dec. 1995.

Object Management Group. The Common
Object Request Broker: Architecture and
Specification. Object Management Group,
Needham, MA, U.S.A., 1998.

L. E. Parker. L-ALLIANCE: Task-oriented
multi-robot learning in behavioral-based sys-
tems. Advanced Robotics, 11(4):305-322,
1997.

L. E. Parker. Toward the automated syn-
thesis of cooperative mobile robot teams. In
Proc. of SPIE Mobile Robots XIII, volume
3525, pages 82-93, 1998.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

11

P. Pirjanian, T. Huntsberger, A. Trebi-
Ollennu, H. Aghazarian, H. Das, S. Joshi,
and P. Schenker. Campout: a control archi-
tecture for multirobot planetary outposts. In
Proc. SPIE Conf. Sensor Fusion and Decen-
tralized Control in Robotic Systems III, Nov.
2000.

J. K. Rosenblatt. DAMN: A distributed ar-
chitecture for mobile navigation. Journal of
Ezperimental and Theoretical Artificial In-
telligence, pages 339-360, 1997.

P. E. Rybski, S. A. Stoeter, M. D. Erick-
son, M. Gini, D. F. Hougen, and N. Pa-
panikolopoulos. A team of robotic agents for
surveillance. In Proc. of the Int’l Conf. on
Autonomous Agents, pages 9-16, Barcelona,
Spain, June 2000.

J. B. Sousa and F. L. Pereira. A gen-
eral control architecture for multiple vehi-
cles. In Proc. of the IEEE Int’l Conference
on Robotics and Automation, pages 692—697,
Minneapolis, MN, 1996.

J. Stankovic, M. Spuri, K. Ramamritham,
and G. Buttazzo. Deadline Scheduling For
Real-Time Systems: EDF and Related Al-
gorithms. Kluwer Academic Publishers,
Boston, 1998.

S. A. Stoeter, F. Le Mauff, and N. P. Pa-
panikolopoulos. Real-time door detection in
cluttered environments. In IEEE Int’l Sym-
posium on Intelligent Control, pages 187—
192, Rio, Greece, July 2000.

J. Wang and S. Premvuti. Distributed traf-
fic regulation and control for multiple au-
tonomous mobile robots operating in dis-
crete space. In Proc. of the IEEE Int’l Con-
ference on Robotics and Automation, pages
1619-1624, 1995.

World Wide Web Consortium. Extensible
markup language (XML) 1.0 (second edi-
tion). http://www.w3.org/TR/2000/REC-
xml-20001006, Oct. 2000.

