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This paper describes the latest advances made to a software architecture designed to control multiple miniature
robots. As the robots themselves have very limited computational capabilities, a distributed control system is
needed to coordinate tasks among a large number of robots. Two of the major challenges facing such a system
are the scheduling of access to system resources and the distribution of work across multiple workstations. This
paper discusses solutions to these problems in the context of a distributed surveillance task.
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1. Introduction

There are many advantages in using a dis-
tributed control system to manage the operation
of a group of robots. Such a system could con-
trol a wide variety of heterogeneous devices and
do so over great physical distances. This system
could be very modular, supporting many kinds of
devices. However, designing and implementing a
distributed control system such that it works ef-
fectively and efficiently across varying hardware
configurations and in spite of differing computa-
tional demands is a non-trivial task.

For instance, one challenge is to ensure that
various system components have access to the re-
sources (such as communications channels, com-
putational units, robot chassis, or sensor inputs)
that they need in order to accomplish their tasks.
Not all resources can accommodate many simul-
taneous access requests, and many resources can
only handle a single request at a time. Another
challenge is to determine how to spread the de-
mand for resources over the entire system. This
helps to ensure that the computational and re-
source load is balanced, and that no one compo-
nent is taxed too greatly.

A distributed control system has been devel-
oped for managing a group of small, mobile robots
which have extremely limited on-board sensing
and computing capabilities. These robots, called
Scouts [8], are primarily designed for military ur-

ban surveillance applications. The requirements
of effective urban surveillance dictate the Scouts’
primary design constraints: the robots must be
small enough to hide from plain view and light
enough to be thrown or fired into a building. The
robots must be able to work in teams: this capa-
bility ensures that a larger physical area can be
surveyed by the robots and also provides a de-
gree of redundancy in the event that some of the
robots are disabled or otherwise unable to com-
plete their tasks. Furthermore, the robots need
to operate autonomously. Due to the size and
weight constraints of the Scout’s design, the com-
putational hardware present available on a Scout
is limited to two 8-bit microcontrollers. Addi-
tional hardware present on the Scout typically in-
cludes a video camera, an analog radio frequency
(RF) receiver providing a low-bandwidth means
of sending data to the robot, and an analog RF
transmitter for broadcasting live video from the
robot’s camera.

The limited computational hardware present
on the Scouts makes them completely reliant
upon a proxy processing scheme for operation. In
this scheme, the “bodies” of the robots are phys-
ically separate from the “brains” and are con-
nected only by wireless data links. Any work-
station within range of a particular Scout robot is
capable of receiving and interpreting its transmis-
sions. Because the control software for the Scouts
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runs on one or many external workstations, it
has access to the resources of other participating
workstations on the Internet. This means that
the workstation processing the sensor input does
not necessarily have to be the same as the one
that is transmitting motion commands back to
the Scout robots.

The communication channels that the Scouts
use to send and receive information are very lim-
ited in power and available throughput. As a re-
sult, access to these channels must be explicitly
scheduled so that the demand for them can be
met while maintaining the integrity of the sys-
tem’s operation. The Scout control architecture
has been developed to take these factors into
account. Additionally, because the architecture
can make use of multiple networked workstations,
it attempts to improve the entire system’s per-
formance by balancing the computational load
across these computers.

This paper provides a general overview of the
Scouts’ control architecture and describes the ar-
chitecture’s resource management and load bal-
ancing capabilities. Experimental results which
illustrate the utility of these features are pre-
sented.

2. Related Research

A software architecture designed for controlling
groups of robots must allow for distributed oper-
ations, handle resource allocation, and support
real-time operations with graceful degradation.
A number of architectures have been proposed,
many of them described in [5]. Our architecture
has some similarities with CAMPOUT [7], a dis-
tributed hybrid-architecture based on behaviors.
The major difference is that we focus on resource
allocation and dynamic scheduling, while CAM-
POUT is mostly designed for behavior fusion.
We rely on CORBA [4] as the underlying tech-
nology for distributed processing, while in CAM-
POUT each robot runs an instance of the archi-
tecture and uses sockets for communication with
other robots. Our architecture also has some sim-
ilarities with ALLIANCE [6], which provides dis-
tributed and fault-tolerant control for teams of
homogeneous robots. The issues that our archi-

tecture addresses are more general, allowing for
control of heterogeneous robot teams as well as
not putting any restrictions on the methodology
for the robot control (deliberative or reactive).

Resource allocation and dynamic scheduling
are essential to ensure robust execution. Our
work focuses on dynamic allocation of resources
at execution time, as opposed to analyzing re-
source requests off-line, as in [1,3], and modifying
the plans when requests cannot be satisfied. Our
approach is specially suited to unpredictable en-
vironments, where resources have to be allocated
in a dynamic way that cannot be predicted in ad-
vance. We rely on the wide body of algorithms
that exists in the area of real-time scheduling [9]
and load balancing [2]. Our architecture pro-
vides support for distribution of resources across
robots, use of shared resources, and seamless in-
tegration of autonomous and human-supervised
control [10].

3. Distributed Robotic Control

The Scout robot is a cylindrical, two-wheeled
robot that is 40 mm in diameter and 110mm in
length. Designed for portability and the ability
to access hard-to-reach areas, Scouts have po-
tential applications in the fields of urban surveil-
lance, search-and-rescue scenarios, and other sit-
uations requiring a team of small, autonomous,
maneuverable robots. One of the primary mis-
sions that these robots are designed for is a
distributed reconnaissance and surveillance task
where larger robots called Rangers are used to
transport and deploy the Scouts into areas where
they can gather further information. In any par-
ticular mission, there could be up to ten Scouts
assigned to a single Ranger. More detail about
the Ranger/Scout hardware, the reconnaissance
and surveillance missions they are designed to do,
and some experimental validation of these mis-
sions is beyond the scope of this paper and in-
stead can be found in [8].

To facilitate the operation of team-based au-
tonomous behaviors, a software architecture has
been developed. This software architecture con-
sists of several components. Many of these com-
ponents are Resource Controllers (RCs), which
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dark place in which to hide.

B:  This Scout has moved to a dark area (the shadow underneath a piece of furniture) and hidden in it.

D:  This Scout is watching for motion, alerting the user to the presence of any moving targets

A: This Scout has started in an open part of a room surrounded by furniture.  It starts by searching for a 

C:  This Scout has turned toward light (in this case, the open area of the room).

within its line of sight.

D
A

B
C

Moving targetFurniture under which Scouts could hide

Scout robot

Figure 1. Example of the Place Sensor Net behavior.

control access to various system resources, such
as the Scout robots, radio and video transmis-
sion frequencies, and various framegrabber cards.
Some RCs, such as those that manage the ra-
dio frequencies, are sharable, which indicates that
multiple system components may be granted con-
current access to these resources. Other RCs,
such as those that manage the framegrabber
cards, are non-sharable, which indicates that only
one system component may access them at a time.
Other components, called Behaviors, utilize the
system RCs to perform autonomous tasks. Behav-
iors can be joined together in a hierarchical struc-
ture to perform arbitrarily complex tasks. To
simplify the writing of Behaviors, an abstraction
called the Aggregate Resource Controller (ARC)
has been developed. ARCs encapsulate Behav-
iors’ requests for simultaneous access to groups of
RCs.

One of the more complex autonomous behav-
iors the system supports is Place Sensor Net,
which is the establishment of a sensor network
of Scout robots (Figure 1). This is the deploy-
ment phase of the mission, where a Ranger sends
a number of Scouts into an area so they can bet-
ter view the environment. When the Place Sensor
Net behavior is activated, all Scouts involved first
search for a dark location and servo toward it, at-
tempting to hide. After each Scout is hidden, it
turns toward the light and watches for motion.
This task is relatively demanding of the software
architecture, making it an ideal example of how
the architecture schedules access to resources and
how it shares the workload among multiple ma-
chines.
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4. Resource Controller Manager

The Resource Controller Manager
(RCM) is the core service responsible for schedul-
ing access to all system resources. A behavior re-
quests simultaneous access to a group of RCs by
creating an ARC and having the ARC request a
schedule from the RCM. Each ARC has several
parameters, set by the behavior, which are of in-
terest to the RCM. The most important parame-
ter is needed RCs, a list of all the requested RCs.
For each sharable RC in this list, the behavior
must provide one or more bandwidth parameters,
which quantify (in an RC-specific way) how the
behavior intends to utilize the resource. Other
ARC parameters set by the behavior include a
priority and a minimum runtime. The latter
parameter specifies the minimum amount of time
that the behavior must control all requested RCs
in order to accomplish any useful work. This pa-
rameter is necessary in our system because some
components, such as the Scouts’ video cameras,
can take several seconds to activate, during which
the behaviors can take no useful action.

Whenever the RCM computes a proposed
schedule, it must query all sharable RCs that
will be in use. These queries determine whether
the sharable RCs can handle the proposed sets
of ARCs, given the ARCs’ bandwidth parame-
ters. This is done because the RCM cannot be
expected to know the implementation details of
every sharable RC. The sharable RCs must use
the bandwidth parameters provided to determine
whether they can handle the requested load. If
a sharable RC determines that it cannot handle
the load, it rejects the proposed schedule and the
RCM is forced to come up with a different sched-
ule proposal. In this way, the domain-specific
knowledge of a sharable RC can be used as a
veto power, influencing the RCM’s scheduling de-
cisions.

A UML sequence diagram showing the behav-
ior of the RCM and related components during
a typical schedule request is shown in Figure 2.
This diagram shows a Place Sensor Net behavior
creating arc0, an ARC which requests a schedule
from the RCM. The RCM computes a proposed
schedule and sends it off to all the sharable RCs

on the system. All sharable RCs accept the sched-
ule, so the RCM notifies all scheduled ARCs (arc0
and any others that may have already been run-
ning) that they now have access to their needed
RCs. The Place Sensor Net behavior can then
use these resources to complete its task. When
the ARC’s minimum runtime has expired or the
RCM has determined that the ARC should be
preempted, the ARC is notified that its resources
are no longer available. In turn, the ARC noti-
fies its behavior that the resources are no longer
available, and the behavior stops processing.

Two different strategies for computing the
schedule have been tried. In the first, an opti-
mal schedule is produced such that the number
of RCs in use at any given time is maximized.
The problem with this approach is that, for large
numbers of RCs, computing the optimal sched-
ule is exponentially complex (in terms of time).
The computational complexity for this approach
is dominated by the calculation of all possible sets
of RCs.

Computing these RC sets and sending each of
them off as a query to each sharable RC for test-
ing has a worst-case time complexity on the order
of O(2n), where n is the number of RCs available
to the system. This is acceptable for small sets of
RCs, but it does not scale well even for moderate
numbers of RC requests.

The second scheduling strategy reduces total
runtime by choosing a schedule that can be com-
puted in polynomial time. This approach con-
siders several factors when calculating a sched-
ule. If there is resource contention between mul-
tiple ARCs, their priority values are first ex-
amined, with ARCs of higher priority having
the chance to run first. If the priorities of multi-
ple ARCs are the same, the RCM looks at their
minimum runtime parameters. The RCM sched-
ules ARCs with lower minimum runtime values
first. If the minimum runtimes are also identical,
the RCM arbitrates the tie by giving priority to
the first ARC that requested scheduling. ARCs
which do not immediately get the chance to run
are queued; the RCM examines this queue every
second2 to determine if any queued ARCs can be

2The time quantum of this architecture is one second.
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:RCM :SharableRC

acceptance := queryRC()

:PlaceSensorNetB

Operator arc0

«create»

«create»

requestSchedule()
calculateSchedule()

resourcesAvailable()

resourcesNotAvailable()

start()

stop()

[minimum runtime
expired or ARC

preempted]

During this interval,
the PlaceSensorNetB
behavior has access
to all RCs in its
ARC and performs 
its operations.

Figure 2. UML sequence diagram showing a typical RCM schedule request.

started. If there is a queue of ARCs waiting for
resources, a new ARC making a resource request
must also contend with the ARCs in the queue.
An additional feature of this scheduling algorithm
is its ability to preempt currently-running ARCs
(which may not have been running for their re-
quested minimum runtime) if an ARC of higher
priority requests a schedule. Any preempted
ARCs that have not completed their minimum
runtime enter the queue of waiting ARCs until
their needed resources are free again. In this case,
the preempted ARCs will be allowed another full
slot of minimum runtime. The runtime complex-
ity of this scheduling algorithm is dominated by
the number of ARCs making RC requests and the
number of total possible RCs each ARC can re-
quest.

The worst-case time complexity of calculating
the schedule is O(mn2), where m is the number of
RCs in the system and n is the number of ARCs
contending for access to those RCs.

Preliminary testing illustrates significant per-
formance difference between the two RCM

This value was chosen because behaviors and other com-
ponents do not make requests faster than once a second.

scheduling algorithms. The two versions of the
scheduler were run in a controlled experiment
in which ten RCs were available to the system.
Twenty behaviors were written to simultaneously
contend for these resources; each behavior re-
quested exclusive access to up to five RCs. Over
ten trials, the first version of the scheduling al-
gorithm took a mean of 39.3 seconds to calculate
a schedule, while the second version calculated a
schedule in a mean time of 0.59 seconds. The
second algorithm is preferred because it is clearly
more responsive to access control requests.

To demonstrate the operation of this schedul-
ing algorithm, a version of the Place Sensor Net
behavior was run on an implementation of the
RCM. In this scenario, there are four resources
available to the system. Two of these resources
correspond to Scouts, while two correspond to
the framegrabber cards used to process video.
(To simplify this demonstration, no sharable RCs
were used.) The Place Sensor Net behavior cre-
ates a total of four ARCs to encapsulate resource
requests; all of these ARCs request a schedule
within the first two seconds. After eleven sec-
onds have elapsed, a human operator takes man-
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Table 1
Summary of resource requests made during the Place Sensor Net scenario.

ARC Sched. Req. Time priority min. runtime needed RCs
arc0 t = 0 sec. 1 5 sec. Scout33, FGrab1
arc1 t = 0 sec. 1 5 sec. Scout35, FGrab1
arc2 t = 1 sec. 1 4 sec. Scout33, FGrab2
arc3 t = 2 sec. 1 3 sec. Scout33, FGrab2
arc4 t = 11 sec. 10 3 sec. Scout33, Scout35, FGrab1

Table 2
Allocation of resources during the Place Sensor Net scenario.

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Scout33 0 0 0 0 0 3 3 3 2 2 2 4 4 4 2 2 2 2
Scout35 - - - - - 1 1 1 1 1 - 4 4 4 - - - -
FGrab1 0 0 0 0 0 1 1 1 1 1 - 4 4 4 - - - -
FGrab2 - - - - - 3 3 3 2 2 2 - - - 2 2 2 2

ual control of the system, requiring two Scouts
and a framegrabber card. The human controller
has priority over all autonomous behaviors, so the
ARC created on the operator’s behalf has a very
high priority.

Table 1 summarizes the resource requests made
by the various ARCs during the scenario. The
ARCs are ordered by the time each requested
the RCM for a schedule. Table 2 shows how the
scheduler allocated the resources to this set of
ARCs.

Initially, arc0 and arc1 request a schedule from
the RCM. However, they contend for FGrab1, the
first Framegrabber RC. Since their priority and
minimum runtime parameters are identical, the
RCM chooses to schedule arc0 first, because arc0
was the first to initiate a schedule request. At
time t = 1, arc2 makes a schedule request, but is
blocked because arc0 is using Scout33. At t = 2,
arc3 makes a schedule request. This ARC has
a shorter minimum runtime than arc2, but re-
quires the same resources, which are still in use
by arc0. Hence, it is also blocked. At t = 5,
arc0’s minimum runtime has expired, so it is re-
leased from the schedule, and the RCM now has
to allocate the new set of free RCs among the
waiting ARCs. Since arc1, arc2, and arc3 are all
of the same priority, arc3 gets its resources al-
located first, because it has the shortest minimum
runtime. The free RCs remaining are exactly

those needed by arc1, so it is also scheduled to run
at this time. After three seconds have elapsed,
arc3’s resources are given to arc2. arc2 contin-
ues until t = 11, when arc4 requests control of
many resources on behalf of a human operator.
This ARC preempts arc2, since it has a higher
priority. arc2 is placed back into the queue
of waiting ARCs until t = 14, when arc4 fin-
ishes and its RCs are freed. arc2 then runs for
its full four-second minimum runtime before it is
finished. After t = 17, arc2’s resources are freed,
and the system returns to an idle state.

5. Load Balancing

Load balancing is another important part of
the architecture. Without load balancing, the
placement of components across computers will
likely be done in a suboptimal way. If many com-
ponents are started on the same workstation, or
if the selected workstation has limited computa-
tional power, the overall performance of the sys-
tem will decrease.

Since components can be started at any time
during the running of the architecture, and since
the architecture currently does not support pro-
cess migration (the movement of a running pro-
cess from one workstation to another while main-
taining its internal state), there is no other way
to guarantee that all computational resources will
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Figure 3. Load average on three computers with (a) simultaneous behavior start times and (b) staggered
behavior start times.

be used equally.
Load balancing is done by the Load Bal-

ancer and the Load Reporter, two core ser-
vices dedicated specifically to this task. When
a new component (such as a behavior, an ARC,
or an RC) is to be started, several conditions
are analyzed to determine the workstation with
the least amount of load. The component is
then started on that machine. Each machine
capable of starting software components hosts a
Load Reporter, which periodically sends rele-
vant load information to the central Load Bal-
ancer service. When the Component Placer
needs to start a new component, it queries the
Load Balancer for the best host on which to
start the component, given the list of possible
hosts. The Load Balancer returns the name
of the best host based on a set of specified con-
ditions, such as current load average, processor
speed, and available memory. The Component
Placer may choose which metric it wishes the
Load Balancer to use based on runtime condi-
tions.

The current load balancing system has both ad-
vantages and disadvantages; these can best be
seen by examining two simulated Place Sensor
Net scenarios (Figure 3), which illustrate how the
Load Balancer operates in different situations.

In the first situation (Figure 3(a)), one Place Sen-
sor Net is started using all of the available Scouts
simultaneously. Since none of the computers in
the network have a very high load, all of the com-
ponents are started on one machine. Once the
behavior begins to run, it is obvious that system
resources are not being used effectively. With-
out process migration, components are confined
to the machine on which they were started, re-
gardless of how its load changes. The current
system does not compensate well for this, but it
does perform load balancing well for components
which are started at staggered intervals. The sec-
ond situation, shown by Figure 3(b), illustrates
the starting of three different Place Sensor Net
behaviors. These sensor nets are placed in three
different areas which require varying amounts of
time for the three groups of Scouts to reach, so
the Place Sensor Net behaviors are not started at
the same time. As the graphs indicate, the Load
Balancer starts up components on each of the
available machines because it takes into account
which machines have heavier loads each time the
Component Placer needs to start a new com-
ponent. The new Load Reporter and Load
Balancer core services help to ensure that new
components are distributed appropriately and ef-
ficiently over the set of available hosts.
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6. Summary and Future Work

Details of the scheduling and load-balancing
capabilities of a distributed robotic control ar-
chitecture have been presented. The scheduling
algorithm used by the Resource Controller
Manager does not necessarily guarantee the
generation of an optimal schedule of RCs, but
it is capable of generating a reasonable schedule
within an acceptable amount of time. The Load
Balancer service tries to make sure that the
computational load is spread equally among all
workstations in the system.

One area of future research is process migra-
tion. The current load balancing system decides
only where components should be started, but it
cannot move them from one machine to another.
The next step would be to allow components to be
moved from one computer to another while min-
imizing the interruption of their operation and
preserving their internal state. Because this is a
distributed system running over connections that
may have high latency, there is currently no way
to guarantee real-time performance of robotic be-
haviors. All behaviors are written with this in
mind and must explicitly adapt if the rate of sen-
sor data reception diminishes. More advanced
load balancing capabilities would help to decrease
this potential performance bottleneck.

Another area for future work involves deter-
mining which data is most useful to provide to
the Load Balancer so that it can make better
decisions about the best host on which to start a
component. This may also involve allowing the
core services to detect at runtime which pieces of
information should be used to make this decision.

Further research is also needed to help the
Load Balancer make its decision of the best
host for a new component based on specific prop-
erties of that component. This would spread out
the load even further, allowing computationally
intensive components to be started on different
workstations.
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