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Summary. Distributed play-based approaches have been proposed as an effective
means of switching strategies during the course of timed, zero-sum games, such as
robot soccer. In this paper, we empirically show that different plays have a significant
effect on opponent performance in real robot soccer games. We also consider the
problem of distributed play recognition: classifying the strategy being played by the
opponent team. Play recognition in real robot soccer is a particularly challenging
problem because our observations are only “incidental” — that is, the primary task
of our team is to play soccer, not to explicitly observe members of the other team.
Despite these challenges, we achieve high classification accuracy in the robot soccer
domain.

1 Introduction

Many distributed robotic systems operate in complex, uncertain environ-
ments. In order to function robustly in such domains, robot teams may need
to be equipped with multiple alternate approaches to solving the same tasks.
For instance, a team that is traveling together through a crowded hallway
may need to adopt a significantly different team-level behavior than a team
that is navigating through a wide open space. In the past, we have proposed
plays as a means for a distributed team to adapt its high-level strategy to
the features found in the environment [2]. In this paper, we present an exper-
imental study showing that different plays have a significant effect on team
performance in a robot soccer domain. We also consider the problem of dis-
tributed play recognition: combining our team’s observations to classify the
behavior of the opponent team. In a real robot soccer game, our team mem-
bers must focus their limited field of view on the most important objects in
the environment, such as the ball and the localization landmarks. In contrast
to a team that is fully engaged in tracking multiple moving objects, such as
in [5], our team does not have the luxury of purposefully tracking opponent
robots or spreading out to maximize the portion of the field that is viewed by
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the team. Despite these challenges, we show that our distributed team is able
to effectively recognize the behavior of the opponent team.

2 Background

In previous work, we have presented a distributed, play-based strategy selec-
tion algorithm that allows a team of robots to autonomously change team
strategies based on features such as the score of the game and the time re-
maining [2]. A play is a team plan that provides a set of roles; these roles are
assigned to robots upon initiation of the play [1]. Each role specifies the top-
level behavior of the associated robot. In the RoboCup domain, our robots’
roles are region-based: each robot is assigned to play in a specific region of the
field, and will only pursue the ball when the ball is within its own region.

A play selector runs continuously on one robot that is arbitrarily chosen
to be the leader. As input, the play selector receives the state of the world
(including the score of the game and the time remaining) and a playbook —
the list of all strategies available to the team. The play selector finds the best
play from the playbook and broadcasts the results to all teammates. In the
past, we hand-coded a set of weights — one for each play in the playbook —
and the play selector would choose the highest-weight play that was applicable
in the current state. This allowed us to manually specify team behaviors such
as “if there are fewer than two minutes remaining in the game and we are
losing, play aggressively.” This algorithm was originally used in the RoboCup
2005 competition and was the first demonstrated instance of a distributed
RoboCup team changing strategies in response to the score and time of the
soccer game.

One weakness of our previous work is that the play weights were hand-
coded by humans, rather than selected optimally. We therefore introduced
thresholded-rewards MDPs, which allow an agent to act optimally in domains
in which the goal is to achieve a specified reward level within a given time
deadline [3, 4]. In RoboCup, we treat each of our goals as +1 reward and
each opponent goal as −1 reward; then the goal is to maximize the proba-
bility of achieving a positive cumulative reward by the end of the game. The
solution to a thresholded-rewards MDP gives us the policy that optimizes our
chances of winning in such a situation. In previous work, we have shown that
switching strategies based on score and time allows us to win more often than
we lose, compared to an opponent that does not switch strategies — even if
the opponent has strictly better low-level skills (i.e. probabilities of scoring
at each time step) than our team does. However, this work only addressed
a simple MDP-based model of the RoboCup domain, and was not actually
implemented on real robots.

In this paper, we address the problem of strategy switching in a real dis-
tributed robot team. We address two separate aspects of this problem: measur-
ing the effectiveness of switching our own plays, and successfully recognizing
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the strategy played by the opponent team. All our results are based on exten-
sive experiments using real robot teams in a realistic robot soccer domain.

Section 3 describes our experimental domain. In Section 4, we present em-
pirical results showing that switching strategies against a given opponent can
produce a significantly different distribution of goals scored. In combination
with our previous results, this shows that we should be able to win more of-
ten than lose when playing against opponents that do not switch strategies,
even if the teams are otherwise equally matched. In Section 1, we show how
our team’s distributed perception of the game state and opponent positions
can be used to classify the strategy being used by the other team with high
accuracy. In a real game scenario, these classification results could be used to
change our own strategy in response to the opponents’ behavior. We present
our conclusions in Section 6.

3 Experimental Domain

All the experiments presented in this paper were carried out in a domain based
on the official RoboCup Four-Legged League rules for 2008 [7]. In each exper-
iment, two teams of three robots played a 10-minute-long game of soccer. The
software used on both teams was the code for Carnegie Mellon’s CMDash’08
entry in the 2008 RoboCup US Open. Therefore, the underlying behaviors
and skills of each team were identical; the only difference between experimen-
tal trials was the selection of plays for each team. Each robot on each team
was a field player; there were no goalkeepers. Due to this, the Illegal Defender
rule (which prevents the defending team’s field players from entering the goal
box) was not enforced. All other penalties, such as player pushing, leaving
the field, and ball holding, were enforced. In case of a penalty, the offending
player(s) were picked up and moved immediately to the halfway line (a “0-
second standard removal penalty”) rather than remaining out of play for 30
seconds. This change was made such that a single human could successfully
referee a game.

In this paper, we focus on two separate plays: RoboCup and SuperDe-
fense. The RoboCup play is the default play we have generally used in
previous competitions. This play assigns three roles: an attacker robot that
chases the ball over the entire field, a defender robot that protects the defen-
sive area of the field, and a supporter robot that stays in the offensive region
of the field. The RoboCup play is a balanced strategy that allows our team to
score effectively and also provides a reasonable defense. In contrast, the Su-
perDefense play assigns all three field players to defensive roles. The front
defender covers approximately the same region as a normal defender robot,
but stands much further forward when the ball is not in the defensive half
of the field. The middle defender covers a slightly smaller region and usually
stands about a meter behind the front defender; the rear defender only cov-
ers the area closest to the goal and usually stands about a meter behind the
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middle defender. Typically, when playing SuperDefense, the front defender
will immediately engage the ball when it enters the defensive half of the field.
If the front defender fails to clear the ball, the ball will eventually enter the
middle defender’s region; the middle defender will then join the front defender
in trying to clear the ball. If the attacking team is still able to advance the
ball forward near the goal, the rear defender joins in the defense and also
attempts to clear the ball. By employing this strategy of defense-in-depth,
the SuperDefense play is intended to make it very difficult for an opponent
to successfully score a goal. However, the SuperDefense play comes with a
significant drawback; namely, it is very unlikely that this play will ever score
a goal. In a real game situation, we would never run the SuperDefense play
for an entire game; rather, this is a strategy we would like to employ when our
team is ahead near the end of the game and we wish to prevent the opponents
from scoring an equalizer goal.

FIXME: show photos of the two different plays + the regions of the roles

4 Multi-Robot Play Effectiveness

In this section, we aim to answer the question: do different team strategies
produce significantly different outcomes when run against a real opponent
team? To test this, we played a series of games against a static team con-
figured to use the RoboCup strategy. For the control case, our team also
played the RoboCup strategy. For the experimental case, our team played
the SuperDefense strategy. We are interested in seeing if the SuperDe-
fense play leads to fewer opponent goals than RoboCup, and also if the
time between opponent goals is significantly higher for SuperDefense. Each
case was tested in 12 independent 10-minute games, for a total of 4 hours’
worth of game time. To ensure fairness between the trials, the colors of the
robots’ uniforms and the sides of the field were swapped between each trial.
The final score of each game and the time of each goal was recorded.

When playing RoboCup against RoboCup, our team scored 35 goals in
total; this is a mean of 2.93 goals per game. The opponent team scored 42
goals in total, a mean of 3.50 goals per game. When playing SuperDefense
against RoboCup, our team scored no goals; the opponent team scored a
total of 22 goals, a mean of 1.83 goals per game. Figure 1 shows a histogram
of the number of goals scored by our opponents in each of the games.

We tested the statistical significance of the difference between the number
of opponent goals scored per game using Student’s two-tailed t-test (assuming
unequal variances) and a one-way analysis of variance (ANOVA). Both tests
indicate that the difference in distributions between our two conditions are
statistically significant (p = 0.0107 for the t-test; p = 0.0104 for the ANOVA).

In addition to the number of goals scored by our opponents, we are also
interested in how long it takes for the opponents to score. We therefore calcu-
lated the time between consecutive opponent goals in each of the games. At
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Fig. 1. Histogram of the number of goals scored per game for the two conditions.
When our team uses the SuperDefense play, the opponents score significantly
fewer goals.

the end of the game, we pessimistically assume that the opponents score im-
mediately after the game is over, since we don’t know how long it would have
taken for the opponents to score their next goal (unless the game time remain-
ing at the time of the last opponent goal was less than 29 seconds, which was
the fastest time between goals in any trial). This leads to a mean of 133.3 sec-
onds between goals for the RoboCup condition, and a mean of 223.4 seconds
between opponent goals for the SuperDefense condition. Figure 2 shows a
histogram of the time between opponent goals for the two conditions.

We again tested the statistical significance of the difference between the
distributions using Student’s two-tailed t-test (assuming unequal variances)
and a one-way analysis of variance (ANOVA). Both tests indicate that the dif-
ference in distributions between our two conditions are statistically significant
(p = 0.0077 for the t-test; p = 0.0015 for the ANOVA).

5 Distributed Incidental Play Recognition

In the previous section, we considered the effect of switching our own play
in order to prevent the opponent team from scoring goals. In this section,
we consider the problem of play recognition — recognizing the behavior of
the opponent team from our own team’s observations. This is an interesting
distributed perception problem because our team’s observations of the envi-
ronment and other robots are incidental rather than purposeful. By this, we
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Fig. 2. Distribution of time between opponent goals. When our team uses the
SuperDefense play, the opponents take significantly longer to score goals.

mean that the primary task of our team is not to observe the environment
and classify the behavior of the other team; rather, our task is to play soccer
well, and any observations of the environment or opponent robots happen by
“accident” while we play soccer. Since the AIBO camera’s field of view is very
narrow — under 60 degrees — each robot has a very limited focus of atten-
tion, which is usually focused on the ball since the ball is the most important
object in the environment. In particular, our team does not explicitly track
the movements of the opponent robots nor attempt to maximize the portion
of the field that is viewed.

In this paper, we use hidden Markov models (HMMs) to model the behav-
ior of the other team [6]. To enable distributed play recognition, each of our
robots communicates the following data once per second:

• The robot’s best estimate of its own position.
• The robot’s best estimate of the position of the ball.
• The position of the last opponent robot seen by the robot.

All positions are communicated in global coordinates, so the team has a com-
mon frame of reference. For each of these features, each robot also broadcasts
a boolean feature indicating whether the observation is considered “valid”.
For example, the robot’s estimate of its own position is valid iff the robot’s
estimate of localization error is relatively low. For purposes of this experiment,
the data broadcast by each robot was also sent to an offboard computer for
later processing; in a real game situation the robots would only broadcast to
each other and use the results to classify the opponent behavior online. Fig-
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(a) RoboCup, first minute. (b) SuperDefense, first minute.

(c) RoboCup, full game. (d) SuperDefense, full game.

Fig. 3. Sample log data from two games. Lines indicate the positions of our own
robots, circles indicate observations of the ball, and squares indicate observations of
opponent robots. Our goal is located on the right side of each figure; the opponents’
goal is located on the left side of each figure. Figure (a) shows data from the first
minute of a game in which the opponents are playing the RoboCup strategy; Figure
(b) shows data from the first minute of a game in which the opponents are playing
the SuperDefense strategy. Figures (c) and (d) respectively show the data from
entire RoboCup and SuperDefense games.

ure 3 shows some sample data logged by the offboard computer from a typical
RoboCup game and a typical SuperDefense game.

Formally, the observation of a single robot r at timestep t is:

or,t = 〈bxr,t, byr,t, bvr,t, pxr,t, pyr,t, pvr,t, oxr,t, oyr,t, ovr,t〉, (1)

where bxr,t and byr,t give the position of the ball in global coordinates as
seen by robot r at time t and bvr,t is a boolean flag saying whether robot
r considers the ball observation to be valid. Similarly, pxr,t, pyr,t, and pvr,t
give the position and validity of robot r’s own position and oxr,t, oyr,t, and
ovr,t give the position and validity of the opponent most recently observed
by robot r. We then define the joint observation jt of the team at time t
as the combination of the individual robots’ observations at time t: jt =
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Algorithm 1 Play-Recognition algorithm.
1: Given: training sets RCtrain and SDtrain, observation sequence J of length t
2: λRC ← Baum-Welch(RCtrain)
3: λSD ← Baum-Welch(SDtrain)
4: for i = 1 to t do
5: Ji ← 〈j1, j2, . . . , ji〉
6: pRC ← P (Ji|λRC)
7: pSD ← P (Ji|λSD)
8: if pRC ≥ pSD then
9: C[i]← RoboCup

10: else
11: C[i]← SuperDefense
12: end if
13: end for
14: return C[i]

〈o1,t, o2,t, o3,t〉. Over the course of an entire game that is t timesteps long, the
robots obtain a joint observation sequence J = 〈j1, j2, . . . , jt〉.

Algorithm 1 presents our play-recognition algorithm. This algorithm as-
sumes we have a training set RCtrain consisting of a set {J1, J2, . . . , Jn} of ob-
servation sequences gathered while the opponent was playing the RoboCup
play, and another training set SDtrain consisting of a set {J1, J2, . . . , Jn}
of observation sequences gathered while the opponent was playing the Su-
perDefense play. On lines 2–3 of the play-recognition algorithm, we train
one HMM λRC by providing the training sequences RCtrain as input to the
Baum-Welch algorithm; we also train another HMM λSD by providing the
training sequences SDtrain as input to the Baum-Welch algorithm. Lines 4–
13 provide online classification at each timestep i. Ji is the vector of all joint
observations 〈j1, j2, . . . , jt〉 seen by the team in the first i timesteps. On lines
6–7, we compute the likelihood of Ji according to the two models λRC and
λSD. These likelihoods are computed using the forward algorithm. The model
λ which maximizes the likelihood of the observation sequence is chosen as the
best estimate of which play the opponent team is running. The classification
output is stored in the array C.

To collect training data, we ran twelve 10-minute games against an oppo-
nent team running the RoboCup play and twelve 10-minute games against
an opponent team running the SuperDefense play. In all trials, our own
team was running the RoboCup play. Let RC be the set consisting of the
12 joint observation sequences gathered when playing against a RoboCup
opponent; let SD be the set consisting of the 12 joint observation sequences
gathered when playing against a SuperDefense opponent. We perform leave-
one-out cross-validation to evaluate the effectiveness of our approach. Algo-
rithm 2 presents our cross-validation procedure. Since we have 12 observation
sequences for each case, the main loop (lines 3–12) runs 12 times. In each
iteration, one element sd is held out of SD and one element rc is held out
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Algorithm 2 Cross-validation procedure.
1: Given: sets of observation sequences RC and SD, each of size k
2: correct ← 0; incorrect ← 0
3: for i = 1 to k do
4: rc← RCi

5: sd← SDi

6: Crc ← Play-Recognition(RC − {rc}, SD − {sd}, rc)
7: Csd ← Play-Recognition(RC − {rc}, SD − {sd}, sd)
8: correct ← correct + number of elements e in Crc s.t. e = RoboCup
9: incorrect ← incorrect + number of elements e in Crc s.t. e 6= RoboCup

10: correct ← correct + number of elements e in Csd s.t. e = SuperDefense
11: incorrect ← incorrect + number of elements e in Csd s.t. e 6= SuperDefense
12: end for
13: return correct / ( correct + incorrect )

of RC. The remaining observation sequences are used to classify sd and rc,
and the number of successful and unsuccessful classifications is recorded. The
procedure returns the fraction of timesteps which were successfully classified.

In order to achieve good classification performance, we need a good domain
representation. We are therefore interested in selecting an informative set
of features from the raw joint observations. In principle, we can apply any
arbitrary function f(j) to map a single joint observation to a vector of features.
In this paper, we only consider feature-selection functions of a limited form.
Namely, f(j) can only perform two operations:

1. Filtering out some features, removing them from the joint observation
entirely. Some of the fields communicated by the robots may not be useful
for play recognition, in which case the models may overfit if these fields
are present. Filtering allows useless features to be ignored.

2. Re-ordering features in the joint observation. It may be more useful for a
specific field in the feature vector to represent “the position of the robot
closest to the opponent goal” rather than “the position of robot 1”. Fea-
ture re-ordering allows such semantics to be an explicit part of the model.

To help understand which features are most important for successful play
recognition in robot soccer, we tried a variety of feature-selection functions
and computed the overall classification accuracy of each.

By itself, ball position is the most informative feature. If the observation
vectors include only the ball’s x- and y-coordinates plus the “ball valid” flag,
and the ball observations are sorted by their x-coordinates, we achieve an
overall accuracy of 86.98%. In our coordinate system, the center of the field is
(0, 0), and positive x points towards our own goal, so sorting in ascending order
corresponds to ordering the ball observations from “nearest the opponent
goal” to “furthest from the opponent goal”.

Using only the reported x-positions of our own robots (sorted by x)
achieves an accuracy of 82.34%. It is interesting to note that adding our own
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y-positions actually lowers our classification accuracy to 76.65%, due to over-
fitting. Adding the “own position valid” flag also hurts classification accuracy;
we assume that this is because the robots’ position confidence estimates were
tuned for single-robot behavior, such as deciding when the robot needs to look
at localization landmarks, rather than team behavior or opponent recognition.
By itself, using the x-positions of opponent robots (sorted, plus the “oppo-
nent valid” flag) performs quite poorly, achieving an accuracy of only 69.54%.
Adding the y-positions of opponents also decreases classification accuracy, to
63.74%, which we also attribute to overfitting.

If the feature vector incorporates the ball position plus our own positions,
overall accuracy increases to 87.44%. If we also include the opponent posi-
tions, we reach our best accuracy, of 88.63%. We conclude that the position
of the ball is by far the most important feature; however, including additional
information can help somewhat in classification performance. This is unsur-
prising given the incidental nature of our classification task — since most of
the robots on our team spend most of their time focusing their attention on
the ball, the ball is the object that is seen most and has the lowest obser-
vation error. The accuracy levels achieved with different sets of features are
summarized in Figure 4.

Features used Classification accuracy

〈 ball x, ball y, ball valid 〉 86.98%
〈 own x 〉 82.34%

〈 opp. x, opp. valid 〉 69.54%
〈 ball x, ball y, ball valid, own x 〉 87.44%

〈 ball x, ball y, ball valid, own x, opp. x, opp. valid 〉 88.63%

Fig. 4. Summary of classification accuracy when using different sets of features as
input to the HMM.

Through the selection of the proper set of features, we can achieve clas-
sification accuracy of 88.63%. One question remains: in which circumstances
do we still tend to make errors? Figure 5 shows our classification accuracy
at each time step of a typical RoboCup game and a typical SuperDefense
game. We can see from the figure that all of our classification errors occur
early in the game, before we have collected many observations. After about
100 seconds have elapsed, our classification accuracy for both games is 100%.
In fact, this is the typical pattern seen in almost all the games: the classifica-
tion accuracy is rather poor at the beginning, but improves significantly by
the time 100–200 seconds have elapsed. We therefore claim that in a real robot
soccer scenario, we would not want to change the behavior of our own team
to adjust to the opponents until either a certain amount of time has elapsed
or the likelihoods of the observation sequence given each of the models have
diverged significantly.
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Fig. 5. Classification accuracy at each timestep for a typical RoboCup game and
a typical SuperDefense game.

6 Conclusion
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