
A Team of Humanoid Game Commentators

Manuela Veloso, Nicholas Armstrong-Crews, Sonia Chernova, Elisabeth Crawford,
Colin McMillen, Maayan Roth, and Douglas Vail

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract— We present our work on creating a team of two
humanoid robot commentators for soccer games of teams of four
AIBO robots. The two humanoids stand on the side lines of the
field, autonomously observe the game, wirelessly listen to a “game
computer controller,” and coordinate their announcements with
each other. Given the large degree of uncertainty and dynamics of
the robot soccer games, we further introduce a “puppet master”
system that allows humans to intervene in a sliding autonomy
manner, prompting the robots to commentate on an event if
undetected. The robots process then input from these three
sources, namely own and shared vision, game controller, and
occasional puppet master, to recognize events which they translate
into a varied set of predefined announcements. We present the
behavioral architecture, the vision-based event recognition, and
the game-based adaptive criteria for the selection of comments.
We exemplify our development with multiple illustrative cases
corresponding to different game situations. In summary, our work
contributes a team of two humanoids fully executing a challenging
observation, modeling, coordination, and reporting task.

Index Terms— Entertainment; Gesture and communication;
Cooperating humanoids

I. I NTRODUCTION

Research in robot soccer has rapidly progressed in the last
ten years [1], [2], [3]. The robots successfully compete as
teams, perceiving a challenging dynamic environment, making
decisions, cooperating as a team, and acting to achieve con-
crete objectives. Although the robots play the game, humans
perform all the other functions associated with the game,
including being commentators and referees. So one question
arose on whether we could develop robot commentators and
referees. In this paper, we present how we address the com-
mentator task with a team of two humanoid robots, namely
two Sony QRIO robots [4].1 We aim at a future extension to
robot referees and even coaches.

We develop the commentators for the specific game of
the AIBO robot soccer games, where teams of four AIBOs
compete. Our two robot humanoid commentators stand on the
side line of the field, follow the game, and announce game
events. Figure 1 shows the setup.

Each humanoid robot commentator has a stereo vision
camera, onboard computing for processing its perception,
cognition, and motion, multiple sensors and actuators, and
wireless communication. The robots observe the AIBO game.
They assess the state of the world from three different sources:
(i) their own vision, (ii) a computer game controller that

1QRIO were developed by Sony. Sony finished any new developments of
QRIO as of now.

Fig. 1. Two QRIO Robot Commentators for an AIBO Robot Soccer Game.

records and transmits the calls of the human referee, namely
goals, fouls, and ball out, and (iii) a ”puppet master” as a
QRIO controller that can be activated by a human to prompt
the commentator to announce any event that they may not have
detected through their vision or may not have been called by
the referee.

There are several previous approaches that demonstrated
soccer commentators for either real soccer images ([5]), or
for simulation soccer([6]), or for the small-size RoboCup
soccer game([7], [8]). Except for one of these efforts ([7])
with a humanoid head, the commentators were not done with
humanoids, showing that the core task of commentating a game
does not necessarily “need” to be performed by a humanoid
robot. We present two humanoids performing this task for the
RoboCup AIBO game, which builds upon previous research
but departs from it for the first time for this RoboCup league.
We choose this task for our humanoids for two main reasons.
Firstly, we view the commentator task with an additional goal
of interaction with the audience, which fits well the use of
humanoids. The interaction, as we have developed so far,
can be viewed as a one-way interaction with the audience,
as the robots behave to announce and entertain, but they do
not process visual or sound information from the audience.
Creating the full two-way interactive commentators is one
next step for future work. Secondly, as it is hard to find
tasks for full humanoids to autonomously perform, we find
that this commentator domain provides a concrete challenge
for the robot humanoids, requiring them to completely and
robustly integrate their perception, cognition, and body motion.
An additional interesting aspect of our work, which further

distinguishes it from previous robot commentator efforts, is
our use of two humanoid robot commentators. We pursue
research on multi-robot systems, and the fact that the playing
field is larger than the range of the vision of a single QRIO,
offered a great opportunity for us to investigate a team of two
humanoid commentator robots. Finally, although our work is
developed within the specific commentator task, we aimed at
contributing a general architecture and algorithms potentially
capable of being used in other similar “observation-reporting-
motion” multi-robot tasks. In the paper, we present the ob-
servation, control, motion, and interaction components within
the commentator domain while pointing also the underlying
general contributions.

We organize the paper as follows. Section II addresses
the robot behaviors. It first presents the overall behavior
architecture introducing the connections between the reasoning
and the multiple sources of input and output. It then introduces
the complete behavior algorithm that allows the robots to
robustly identify and call events in the game. Section III and IV
respectively present the recognition of events through vision
processing and from wireless communications, namely from
the game computer controller and the puppet master systems.
Section V presents the library of announcements with multiple
versions of comments for the same event. It further explains
the algorithm for selecting announcements as a function of the
run of the game. Finally Section VI draws conclusions on the
work presented.

II. REASONING

At a high level of abstraction, the commentator task is
clear: the commentators observe the game, recognize events,
and convert their recognition to audible announcements. Our
behavior architecture captures the interactions between these
three underlying main concepts: observations, events, speech.

A. Overall Behavior Architecture

Figure 2 shows a high level overview of the overall archi-
tecture of our system, CMCast, consisting of the two robots, a
centralized control module, the Director, and two external input
sources, i.e., the Game Controller and the Puppet Master.

Fig. 2. The CMCast Overall Architecture.

The commentator task sets a clear requirement for quite
immediate response to events. Although the robots have on-
board computation and behaviors, as we present below, the
potentially delayed wireless communication among them, pro-
hibits from having completely distributed control. We therefore
chose to include the centralized Director module, responsible
for processing external input and guiding the behaviors and
coordination of the two robots.

Input to the Director comes from three classes of sources:
the Game Controller, the Puppet Master, and the robots, in
our case two. The Game Controller is the computer referee of
the robot soccer four-legged AIBO league. The games have a
human referee who verbally makes the calls. As the AIBOs
do not process the speech of the referee, the calls are entered
by another human game official into the Game Controller,
which in turn wirelessly sends the calls to the AIBO robots.
The robot players can then act autonomously in response to
the called game situations, such as kickoff, balls out, and
fouled or penalized robots. The Game Controller became an
obvious source of input for the robot commentator task, as
it captures the set of called game events, which can then be
passed wirelessly to our CMCast Director.

We envisioned CMCast commentating on a larger set of
events than the ones directly available from the Game Con-
troller. As we present below, by following the position of the
ball on the field, the robots are able to recognize a set of
events related to the flow of the game, such as interesting kicks.
However, even with the combination of the Game Controller
and the events detected by their own vision, we knew that there
could be interesting events that would not be detected.

We created an additional interface to input to the Direc-
tor, the Puppet Master, in which we can manually provide
additional game state information that is relevant to the com-
mentator task but not easily sensed by the robots. Section IV
discusses in detail the Game Controller and Puppet Master.

Finally the Director interacts with the robots. It receives
input from the robots consisting of data resulting from the
robot vision processing, as presented in Section III. Addition-
ally, each robot reports the termination of execution of each
motion command.

The Director collects and maintains its input information in
a game or “Event History,” and uses it centrally decide on
the robot behaviors. The Director sends to the robots coupled
speech and primitive behavior commands. The primitive be-
havior commands are sent to each of the robots, where they
are executed by the onboard Behavior algorithm. Through the
input of the robots’ report on the completion of each command,
the Director synchronizes the actions of the robots both with
respect to each other and the speech generated by the offboard
Text-To-Speech system. In the current implementation of CM-
Cast, speech is generated offboard in order to allow the use of
loudspeakers in the noisy stadium environment typical of this
domain. The system can be easily modified to use onboard
speech synthesis instead.

Fig. 3. The CMCast Robot OnBoard Behavior Architecture.

B. Onboard Single Robot Behavior Architecture

Figure 3 shows the behavior architecture onboard the robots.
A series of modules form the main pipeline, in which data is
processed in each step of the sequence.

The reasoning begins with the input from the robot’s on-
board camera images, from which object data is processed
by the “Vision” processing. “Localization” determines the
location and orientation of the robot using the distances to field
landmarks and simple humanoid robot “Odometry” models.
The “World Model” uses the robot and ball position relative
to the robot to represent the location of the ball in terms of its
global position, which is passed by each robot to the Director.
The onboard Behavior module executes primitive behaviors,
as instructed by the Director, using world state information
available from the World Model. Primitive behaviors include
the execution of prescripted gestures, ball tracking and ball
search, all of which are well suited for onboard behaviors, as
they require low latency for smooth execution.

C. Director Behavior Algorithm

During execution, the Director records all of its inputs in
the Event History, which maintains all information about the
game state, such as the score or which robots are penalized.
Additionally, we include in the Event History processed game
statistics of relevant historical information, such as counts
of penalties for each team and robot. CMCast uses this
historical information to make interesting comments on the
development of the game over time; formally, it transforms
the non-Markovian process over game state information into a
Markovian process over the Event History variables.

For each iteration of the algorithm, the Director module
evaluates its input, detects significant events that may have
occurred, and triggers the appropriate responses for each of
the robots. The resulting output can vary between a single
utterance or motion, to a full dialog between the two robots.
Section V describes the algorithm for selecting the appropriate

response to a detected event.

III. E VENT RECOGNITION THROUGH V ISION PROCESSING

Each QRIO robot is equipped with the same color camera
which is used on the AIBO robots. We perform color segmen-
tation on these images using the CMVision [9] image library
and then run a series of object detectors on the segmented
images to determine which objects are present in the images.
Figure 4 shows an example of a raw and the corresponding
color segmented image.

Fig. 4. An example of a raw image from the robot’s camera (top) along with
the corresponding color segmented image (bottom), used for object detection.
In the images, an AIBO robot in a blue uniform holds the ball under its chin
in preparation for a kick. A localization marker, consisting of two colored
bands on top of a white column, is visible at the edge of the field.

In addition to detecting the presence of objects of interest,
these object detectors also return an estimate of each object’s
position as well as a heuristic confidence indicating how likely
it is that the object is truly present. Object detectors look for:
the ball, goals, robots, and localization markers.

Vision on the robot serves two purposes. The first of these
is to provide low latency information to onboard behaviors so
that the robot can quickly and realistically respond to events as
they unfold. In the commentator domain, this mainly takes the
form of ball tracking; the ball position estimates returned from
the vision module are used to servo the robot’s head and body
to make it clear to observers that the robot is paying attention
to the current state of the soccer game. In addition to ball
tracking, information from vision of localization beacons is
used by the robot to compute its current position so that object

positions can be translated into a global coordinate frame and
shared between robots. Additionally, vision of the goals is used
by the robots so they can focus on the appropriate goal in
response to events such as points being scored.

The second purpose of vision is to detect events for the
robots to incorporate into their commentary. Currently, two
types of events are detected: the presence of the ball in a
particular region of the field and times when the ball has been
kicked by a robot. To detect the first type of event, the robot
uses its ball position and localization estimates to determine
when the ball lies in an interesting region of the field, such as
the areas near either of the goals. To determine whether or not
the ball has been kicked, the robot keeps a running history of
ball positions. The movement vectors between the positions
in this history are compared and a heuristic confidence is
computed based on the length of the vectors as well as their
co-linearity. In practice, a history length of six ball sightings,
or one half second’s worth of data, was sufficient to detect
when the ball was kicked.

IV. EVENT RECOGNITION FROMWIRELESSSOURCES

The QRIO robots are equipped with 802.11b wireless LAN
cards. Wireless networking allows the robots to communicate
with each other; the wireless capabilities also enable the robots
to recognize events from two wireless sources of input: the
Game Controller and the Puppet Master.

A. Game Controller

The referees of the four-legged league use a software
program called the “Game Controller,” which wirelessly sends
referee calls and similar information to the players. Figure 5
shows the Game Controller interface. Our commentators also
listen to this data source, which allows them to detect a rich
class of events that would be difficult or impossible to detect
through vision. Specifically, the Game Controller provides the
following information to the robots:

• Game state: the current score, whether the game is in the
first or second half, the time remaining in the half of the
game, and whether a team is about to kick off.

• All the penalties that can be called against the robots: ball
holding, illegal defender, goalie pushing, player pushing,
leaving field, pick-up request, illegal defense, obstruction,
and damage. The penalty data tells us which robot(s) were
penalized for each foul.

• “Ball out” calls made by the referees.
• Time-outs called by either team.

From the Game Controller data, our robots detect several
different types of events. They comment on each type of
penalty by calling the foul, such as“That was a player pushing
penalty on Red.”The first time each penalty is called in each
half, one of the two commentator robots explain the rule in
more detail. This rule explanation serves the important role of
introducing the audience to the probably unknown robot soccer
rules. For instance, the first player pushing penalty would
cause our commentator robot to explain:“Players cannot push

Fig. 5. Screenshot of the Game Controller interface.

each other for more than three seconds.”Players that are
penalized are removed from the game for 30 seconds. We can
use this information from the Game Controller combined with
the Event History to account for situations when more than
one that robot are penalized. The robots then comment when
a team has many penalized players; e.g.,“Many Red players
are now out of the game. This is a big opportunity for Blue!”

Goals are also detected from the Game Controller data. The
specific commentary used for a goal depends strongly on the
past history of goals scored. Goals are announced differently
sensitive to the specific sequence in which the current score
was reached, including whether it’s the first goal of the game,
when one team is far ahead of the other, when one team seems
to be making a comeback, or when the score is equalized.

Other events detected from the Game Controller data include
ball-out events and the time remaining in the half of the game
being played. Reporting on the time remaining is particularly
important, since the official game clock is not typically visible
to the audience except during the final games.

B. Puppet Master

The Game Controller provides notification of many events
that the robots may otherwise have been unable to recognize
autonomously. However, there are still a significant number
of interesting events that are not detectable either with the
onboard vision or the Game Controller input. For instance,
the AIBOs sometimes crash due to empty batteries or software
errors. It would be difficult for the commentators to visually
recognize a crashed robot (as opposed to a stopped robot). For
situations like these, we have developed the offboard Puppet
Master controller to allow a human operator to artificially
insert specific types of events, such as robot crashes, into the
commentators’ event history. Figure 6 shows a screenshot of
the Puppet Master interface.

The Puppet Master represents the interesting feature to
complement the autonomous perceptual, reasoning, and motion
behavior of the robots if needed. The Puppet Master consists
of three main functional parts, namely:

• Call for known undetectable, interesting events- As
shown in the top part of the interface, the Puppet Master
includes choices to manually select several events that
we know may be part of the game, but we also know that
the robots cannot detect them, as of now. There are three
types of such events:

– Predefined events, such as a Pass or a Nice Save,
which we have associated with predefined announc-
ing speech and motion. Our robots also do a special
sequence of actions for a half-time show, and at the
beginning and end of the game.

– “Filler” events , that we use to fill in if nothing really
interesting is happening. CMCast includes a set of
predefined “filler” comments that can then be used.
When the filler event is invoked in the Puppet Master,
the robots comment on something not directly related
to the current game state, such as further explanation
of the game rules, the abilities and hardware of the
AIBO robots, and team-specific details such as their
team captain, areas of research interest, and results
from past RoboCup competitions.

– Concrete speech and motion invocations, which can
be entered manually if they are not part of our set
of predefined events (as shown under the “Say”,
“Motion” empty fields at the top of the interface).
The more the robots do autonomously, the less we
use this feature. (In fact, in the commentating of the
multiple games at the recent RoboCup’2006 event,
we never used this feature during the games.)

• Perceptual guidance- Our CMCast robot commentators
are positioned in rather fixed positions on the side line
of the field (see Figure 1). They can slightly move their
bodies but not in a way that allows them to position them-
selves freely to track the ball. The ball is therefore not
always visible by either of the two robots. Furthermore,
the ball’s position “jumps” as it is manually positioned
by the human referee in different locations on the field
after a ball-out event. Through this feature of the Puppet
Master, we can give guidance on the ball position so that
the robots actively direct their heads to the entered ball
location. The input is given at a high-level of granularity,
as we discretize the field into 25 cells, as shown in
Figure 6, with the two blue (B) and yellow (Y) goals.

• Motion guidance - Finally, the robot’s announcing mo-
tion can make the robot slide away from its desired
position, namely outside of the field and close to the
line. As the robots’ localization or odometry may have
modeling errors, we need to ensure that the robots stay
outside the field boundaries, such that they do not interfere
with the normal game play. This feature of the Puppet
Master, as represented by the multiple arrows, acts as a
remote motion controller to the robot, when needed.

In general, the Puppet Master represents a sliding autonomy
approach. In theory, and if humanoids will one day have
a complete perceptual understanding, including speech and
vision, this feature would disappear. However this is not the
case yet. Therefore the interest in the Puppet Master.

V. COMMENTATING - SPEECH ANDGESTURE

The commentary given by the QRIOs is event driven.
Interesting events are detected from the current game play

Fig. 6. Screenshot of the Puppet Master interface.

history, and are used to generate the actions of the QRIOs.
The commentator algorithm processes the events and decides
what the QRIOs should say and how they should move. The
aim of the commentator algorithm is to ensure that the QRIO
commentators act in a timely, informative and entertaining
way.

The commentator algorithm listens to the vision, the game
controller and the puppet master in order to receive informa-
tion about what we callbase-events. Base-events represent
immediate occurrences in the game like fouls, goals and
exciting kicks. Whenever a base-event is received by the
commentator algorithm, a set of predicates are executed to
determine whether or not aspecial-eventshould be generated.
Special-events are generated based on the history of the game.
For instance, a special- event is generated when a team scores
and becomes 3 goals ahead in order indicate that one of the
teams is dominating the play. In some cases when a special-
event is generated the base-event is not acted on and in other
cases neither the base-event or a special-event are acted on. The
use of special-events allows the robot’s actions to be adapted
to the history of the game. We call the union of base-events
and special-eventsEvents.

In order to decide whether to act on a particular Event, the
commentator algorithm tracks when each Event was last acted
upon. Each type of event has acool-downperiod associated
with it that specifies the time the QRIOs must wait between
acting on the event. This helps to keep the commentary varied.
If an Event has not been acted upon recently it is added to
the queue of events to act on. The commentator algorithm
continually removes the oldest Event from the queue and
selects an Action for the QRIOs to take based on that Event.

The queue of events is kept very short in order to ensure
that the commentary stays up-to-date. If a new Event arrives

and the queue is full, an old item is removed unless it relates
to a very important event such as a goal. Certain events, which
are not particularly important, and only suitable for acting on
right away, are never enqueued when the QRIOs are already
acting on another event. An example is the vision generated
Event that one of the teams is making good progress on the
field. This is not added to the Event queue unless the queue
is empty and no action is currently being executed. Goals are
dealt with in a special way in order to ensure they are acted
upon in a timely manner. When a goal occurs and the current
action is interrupted and the Event queue cleared of all non
goal related events.

Because the aim of the CMCast QRIO commentators is
to be entertaining as well as informative, it is not enough
for each Event to generate a single output behavior on the
part of the robots. Instead, we introduce a library ofActions
and allow for a one-to-many mapping of Events to Actions,
keeping the robot behavior from becoming repetitive. Each
Action is composed of anUtterance, which is the verbal
statement that the robot says, and aGesture, an accompanying
physical motion. Actions may be performed individually by a
single robot, jointly by both QRIOs, or may be composed of a
sequence of Utterances and Gestures forming a “conversation”
between the two commentators. For example, there are many
possible Utterances that the QRIOs may say when a goal is
scored, from the simple “Goal!” to the more elaborate “A great
goal for the Blue team!”

Each processed Event corresponds to a set of several Ac-
tions. An action-selection mechanism is needed to ensure that a
diverse set of behaviors results from Events that occur multiple
times in a single game. We introduce an action-selection
mechanism with two components, a cool-down function and
a max-usage rule. Each Action is assigned an initial weight,
and Actions are selected probabilistically on the basis of these
weights. When an Action is selected, its weight is lowered,
reducing the likelihood that it will be selected in the near
future. The cool-down function raises Action weights over
time. The rate of increase and the maximum weight for each
Action may be inputted with each Action definition. Each
Action may also be assigned a max-usage rule, limiting the
number of times that it can be selected to a fixed constant.
Once the maximum number of usages has been exceeded for
a particular action, it is no longer eligible to be selected.

Table I summarizes the commentator algorithm in pseudo-
code. The method getEvents denotes the process previously
described whereby the history is used to process the base event
and a special-event is possibly generated. The selectAction
method selects actions probabilistically based on their weight
as we have have already described.

VI. CONCLUSION

The commentator task is an interesting domain for humanoid
robots. We present our work on first humanoid commentators
for the AIBO robot soccer games. The game is played on a
large field, is highly dynamic, and is hard to completely apriori
model. We have presented two robot QRIO commentators

procedure eventListener:
1. when a base-event occurs:
2. current-events = getEvents(history, base-event)
3. for event in current-events:
4. if event has not been acted on recently:
5. processEvent(event)

procedure processEvent(event):
1. if event == Goal:
2. clear events-queue and act on the event immediately
3. else if robots currently acting:
4. evaluate if the event should be added to events- queue
5. remove old events from events-queue if it is maximum size
6. else robots not already acting: (events-queue is empty)
7. action= selectAction(Event)
8. perform-action(action)

procedure performAction(action):
1. send speech and gesture commands for action
2. once action has executed, if events-queue not empty:
3. action = selectAction(events-queue.pop())
4. perform-action(action)

TABLE I

A SUMMARY OF THE ANNOUNCING (SPEECH ANDGESTURE) ALGORITHM

that detect a large set of events recognized from a computer
game controller, a puppet master, and the robots’ own vision.
Our complete system, CMCast, is fully implemented and was
demonstrated at recent RoboCup 2006 event in multiple robot
soccer AIBO games. The robot commentators successfully and
autonomously observed the game and announced the events
through varied utterances and motion adapting to the sequence
of the game and the different teams.2

REFERENCES

[1] M. Veloso, W. Uther, M. Fujita, M. Asada, and H. Kitano, “Playing soccer
with legged robots,” inProceedings of IROS-98, Intelligent Robots and
Systems Conference, Victoria, Canada, October 1998, pp. 437–442.

[2] H. Kitano, M. Fujita, S. Zrehen, and K. Kageyama, “Sony Legged Robot
for RoboCup Challenge,” inProceedings of ICRA-98, the 1998 IEEE
International Conference on Robotics and Automation, Leuven, Belgium,
1998, pp. 2605–2612.

[3] G. Lakemeyer, E. Sklar, D. Sorrenti, and T. Takashi, Eds.,RoboCup-2006:
Robot Soccer World Cup XX. Springer-Verlag Press, 2007, forthcoming.

[4] M. Fujita, K. Sabe, Y. Kuroki, T. Ishida, and T. D. Toshi, “SDR-4XII:A
Small Humanoid as an Entertainer in Home Environment,” inRobotics
Research: The Tenth International Symposium. Springer Tracts in
Advanced Robotics, 6, 2003.

[5] E. André and G. Herzog and T. Rist, “On the simultaneous interpretation
of real world image sequences and their natural language description: The
system soccer,” inProceedings of the Eighth ECAI, Munich, 1988, pp.
449–454.

[6] E. André and K. Binsted and K. T. Ishii and S. Luke and G. Herzog
and T. Rist, “Three RoboCup simulation league commentator systems,”
AI Magazine, vol. 21(1), pp. 57–66, Spring 2000.

[7] I. Frank, K. Ishii, H. Okuno, J. Akita, Y. Nakagawa, K. Maeda,
K. Nakadai, and H. Kitano, “And the fans are going wild! SIG plus
MIKE,” in RoboCup-2000: Robot Soccer World Cup IV, P. Stone,
T. Balch, and G. Kraetzschmar, Eds. Berlin: Springer Verlag, 2001.

[8] K. T. Ishii, I. Noda, I. Frank, H. Nakashima, K. Hasida, and H. Matsubara,
“MIKE: An automatic commentary system for soccer,” inProceedings of
the Third International Conference on Multi-Agent Systems, Paris, July
1998, pp. 285–292.

[9] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image
segmentation for interactive robots,” inProceedings of IROS-2000, Japan,
October 2000.

2We thank SONY for making the QRIOs available to us for this task. We
further thank them for their multiple developed motion and software features
that underly our developed CMCast system.

