
Toward the Development of an Intelligent Agent for the

Supply Chain Management Game of the 2003 Trading

Agent Competition

Colin McMillen

May 9, 2003

2

Abstract

This thesis considers the problems posed by the supply chain management game that is

a new addition to the 2003 Trading Agent Competition (TAC). An instance of this game

involves six software agents attempting to maximize profits by manufacturing computers in

a simulated market economy. The design of such an agent is an interesting problem because

a good solution is thought to require a synthesis of several fields, including industrial oper-

ations research, economics, game theory, artificial intelligence, machine learning, multiagent

systems, computational complexity theory, statistics, and probability.

The primary contribution of this thesis is its extensive analysis of the TAC supply chain

management (SCM) game. We present a survey of work from a wide variety of fields that are

related to the TAC SCM competition. We present a detailed analysis of many aspects of the

TAC SCM game, including proofs of theoretical results, metrics by which the performance of

agents can be measured, and suggestions of strategies that may be of use in the implementa-

tion of sophisticated TAC SCM agents. We describe our initial implementation of a simple

TAC SCM agent, and present preliminary experimental results that seem to indicate that

this implementation is at least as sophisticated as those of other teams. These experiments

also illustrate areas where our agent’s performance could be improved. We conclude with a

discussion of future research directions.

3

4

Acknowledgements

I would like to thank Professor Maria Gini. Without her support, guidance, and encourage-

ment, this thesis would not have been possible. I would also like to thank Professor Nikolaos

Papanikolopoulos for initially challenging me to pursue scientific research, and the rest of

my professors at the University of Minnesota for creating an educational, enjoyable, and

challenging atmosphere.

Meetings with members of the MAGNET research project led to the development of

many of the ideas presented in this thesis. I would especially like to thank John Collins and

Amrudin Agovic, who implemented a substantial portion of our current agent. Without their

hard work, the experimental results presented in this thesis would not have been possible.

John was also instrumental in the design of the software architecture of our agent.

I would also like to thank Kristen Stubbs, Michael Zaimont, and Paul Rybski. Their

friendship over the last few years has been invaluable, both socially and intellectually. I

especially appreciate their willingness to listen to problems and to help me develop, refine,

and clarify solutions to these problems. Kristen also spent a great deal of her time in

helping me revise this thesis. Without her help, many of my ideas would not be presented

as clearly. Paul’s cheerful disposition and sense of humor have showed me that research can,

and should be, enjoyable. His influence is partially responsible for my decision to pursue a

doctoral degree.

I am especially grateful for the support of my parents, Shaun and Roseann McMillen,

and my sister, Katie. I cannot express how important their dedication and love have been

5

6

throughout my life.

This work was supported financially through a grant from the National Science Founda-

tion.

Contents

1 Introduction 11

2 Problem Description 15

2.1 Overview . 15

2.2 Customers . 16

2.3 Suppliers . 17

2.4 Assembly and Fulfillment . 18

2.5 Market Reports . 18

2.6 End of Game and Winner Determination . 19

3 Related Work 21

3.1 SCM Techniques Used in Industry . 21

3.1.1 The Kanban Heuristic . 23

3.1.2 The CONWIP Heuristic . 23

3.2 Software Tools for SCM . 24

3.2.1 Decision-Support Software . 24

3.2.2 Automated Supply Chain Management 25

3.3 Economics and Game Theory . 26

3.3.1 Individual Rationality . 26

3.3.2 Pareto Efficiency . 27

3.3.3 Game Theory . 28

7

8 CONTENTS

3.4 Artificial Intelligence Techniques . 29

3.4.1 Game Playing . 29

3.4.2 Machine Learning . 30

3.4.3 Planning . 32

3.4.4 Reasoning under Uncertainty . 33

3.5 Multiagent Systems . 35

3.5.1 Decision-Making: Voting and Auctions 35

3.5.2 Learning to Play Better Against an Opponent 37

3.5.3 Learning to Benefit from Market Conditions 38

3.6 TAC Classic . 39

3.7 Software for the TAC SCM Game . 42

4 Analysis 45

4.1 Interest Rate . 45

4.2 Bottlenecks . 46

4.2.1 Use of Bottlenecks in Post Hoc Game Analysis 49

4.2.2 Bottleneck Analysis of a Typical Game 49

4.2.3 On-Line Bottleneck Prediction . 50

4.3 Maximum Score of a Single Agent . 51

4.4 Maximum Total Score for a Six-Agent Game 52

4.5 The Cost Efficiency Metric . 55

4.6 Agent Design . 57

4.7 Procurement . 58

4.7.1 Demand Fulfillment . 58

4.7.2 Demand Forecasting . 59

4.7.3 Supply Availability and Price Estimation 60

4.7.4 Strategic Procurement Behavior . 61

CONTENTS 9

4.7.5 Minimization of Inventory Costs . 62

4.8 Sales . 62

4.8.1 Order Securement . 63

4.8.2 RFQ Trend Prediction . 64

4.8.3 Customer Order Probabilities . 65

4.8.4 Late Deliveries . 67

4.8.5 Strategic Sales Behavior . 69

4.8.6 Minimization of Inventory Costs . 69

4.9 Production . 70

4.10 Delivery . 71

4.11 Miscellaneous Performance Metrics . 71

4.11.1 Product Quality . 72

4.11.2 Supply Chain Lead Time . 72

5 Implementation 73

5.1 Procurement . 73

5.2 Production . 75

5.3 Sales . 75

5.4 Delivery . 76

6 Experimental Results 77

7 Conclusions and Future Work 83

A Source Code for the Supplier Capacity Simulation 85

Bibliography 89

10 CONTENTS

Chapter 1

Introduction

Recently, competitive scenarios have been increasingly utilized as testbeds for the develop-

ment of multiagent systems. Perhaps the most well-known multiagent competition is the

Robot World Cup Initiative (RoboCup), a robotic soccer competition that specifically em-

phasizes autonomous multiagent collaboration [24]. Another competition sponsored by the

RoboCup Federation is RoboCup Rescue [25], in which teams of autonomous or teleoperated

robots attempt to find victims in an urban search and rescue course. Researchers interested

in autonomous bidding agents started the Trading Agent Competition (TAC) in 2000 [53].

The original TAC game involves agents competing to satisfy clients’ travel and entertainment

desires in a simulation. Agents are responsible for buying airline tickets, reserving hotels,

and finding entertainment packages suitable to each client’s desires. The Trading Agent

Competition has been an annual event since 2000. A new game for the 2003 Trading Agent

Competition (TAC-03) has been proposed by researchers at the Carnegie Mellon University

e-Supply Chain Management Laboratory and the Swedish Institute of Computer Science

(SICS) [2]. This game involves a supply chain management scenario in which agents at-

tempt to maximize profits by manufacturing personal computers (PCs) to sell to customers.

This new supply-chain management game is called TAC SCM; the original game is now

referred to as TAC Classic.

11

12 CHAPTER 1. INTRODUCTION

Stone [52] discusses multiagent competitions, including RoboCup and TAC. He gives

an overview of the rules of these competitions, and notes some similarities and differences

between the two. Most importantly, Stone shares his views on the benefits and drawbacks

of such competitions. These views are based on his participation in numerous instances

of the RoboCup and TAC competitions. He claims that there are many ways in which

scientific progress can be hindered by an organized competition, including: obsession with

winning, domain-specific solutions, barriers to entry, restrictive rules, and invalid evaluation

conclusions. On the other hand, there are also many ways in which scientific progress

can be advanced by an organized competition, by providing research inspiration, providing

deadlines for creating complete working systems, providing a common platform for testing

and exchanging ideas, encouraging continual improvement of solutions, and encouraging

flexible software and hardware. Stone concludes that the benefits of RoboCup and TAC

outweigh the hazards, but emphasizes that the competition results alone are not scientifically

conclusive. He recommends that implementations of novel approaches to the problems posed

by RoboCup and TAC be tested not only in competition, but also in controlled, empirical

experiments.

There are a number of reasons why we believe the TAC SCM competition is interesting.

Agents participating in a TAC game must base their decisions on limited information about

the state of the market and the strategies of other agents. Agents must simultaneously

compete in two separate but interrelated markets: the market from which the agents must

buy their supplies and the market to which the agents must sell their finished products.

Agents have a large number of decisions to make in a limited time, so the computational

efficiency of the decision-making process is paramount. We believe that effective solutions to

the TAC SCM game will be multidisciplinary, as there is substantial related work in the fields

of industrial operations research, economics, game theory, artificial intelligence, multiagent

systems, computational complexity theory, statistics, and probability.

The main contributions of this thesis include a broad summary of work in related areas

13

and theoretical analysis specific to the TAC SCM game. This analysis suggests metrics by

which the performance of TAC SCM agents can be measured and suggestions of strategies

that could be used by an ideal agent. We briefly discuss our implementation of a very simple

TAC SCM agent. We present experimental results that compare the performance of this

agent to simple agents developed by other groups and to the theoretical limits suggested

by our analysis. We conclude by discussing directions in which our future work is likely to

progress.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Problem Description

The rules for the 2003 supply chain management game can be found in full at [2]. They are

briefly summarized here for the sake of completeness.

2.1 Overview

In each TAC SCM game, six autonomous software agents compete to maximize profits in a

computer-assembly scenario. The simulation takes place over a large number of virtual days,

each lasting about fifteen seconds of real time. Each agent has a bank account with an initial

balance of zero. The winning agent is the one with the highest bank balance when the game

is completed. Agents are allowed to go infinitely far into debt, but an interest rate applies

to both positive and negative bank balances. The interest rate is chosen randomly at the

beginning of the game, and is expressed as an annual rate, though interest is compounded

daily.

A Component Catalog and Bill of Materials are sent to each agent at the beginning of

the game. The Component Catalog lists each possible computer component, along with

the component’s base price and a list of suppliers who can produce that component. These

components are the raw materials of the TAC SCM supply chain. The Bill of Materials lists

15

16 CHAPTER 2. PROBLEM DESCRIPTION

sixteen different permutations of components that can be assembled into completed PCs.

Each of these computer types is identified uniquely by a stock keeping unit (SKU) number.

Each SKU is also assigned a number of processing cycles that determines how much time

it takes to assemble that type of computer from raw materials. These PCs are the finished

goods of the TAC SCM supply chain. The values specified in the Component Catalog and

Bill of Materials do not change over the course of the game.

2.2 Customers

Each agent receives requests for quotes (RFQs) from potential customers each day. Each

RFQ specifies which type of computer the customer desires, along with a quantity, a due

date, a reserve price, and a penalty.

Each agent may choose to bid on some or all of the day’s RFQs. Individual bids are hidden

from other agents, but a summary of each day’s price ranges for each type of computer is

provided to the agents at the start of the next day. At the end of the day, each customer

will order from the agent with the lowest bid. Customers will not consider bids above the

reserve price.

The penalty is expressed as a percentage of the reserve price, and is immediately deducted

from the winning agent’s bank account for each day that the agent is late in delivering the

finished product. If the product has not been delivered within five days of the due date, the

order is cancelled by the customer and the agent receives no payment.

Each agent also receives a list of customer orders that were won in the previous day’s

customer RFQ bidding. The agent is responsible for fulfilling these orders by their due dates.

2.3. SUPPLIERS 17

2.3 Suppliers

To attain raw materials, an agent must send a request for quotes (RFQ) to appropriate

suppliers. Each computer component is produced by one or two suppliers; each supplier

provides two different types of components. These correspondences are detailed in each

game’s Component Catalog. Each RFQ specifies a component type, a quantity, and a due

date.

On the next day, the agent will receive a response to each RFQ. If the supplier expects

that it can produce the desired quantity on time, it responds with an offer that contains the

price of the supplies. If the supplier predicts that it will have a large amount of available

supply by that time, this price will be discounted; discounted prices may be as low as 50%

of the component’s base price. The agent can then accept this offer by placing an order.

If the supplier does not expect that it can produce the desired quantity on time, it

responds with two offers:

• An earliest complete offer, in which the supplier responds with a revised due date and

a price. This revised due date is the first day in which the supplier believes it will be

able to supply the entire desired quantity.

• A partial offer, in which the supplier responds with a revised quantity and a price.

The revised quantity is the amount of raw materials which the supplier believes it will

have available on the desired due date.

The agent can accept either one of these amended offers, or reject both.

An agent receives a notification whenever a supplier has delivered parts. Suppliers will not

deliver fractional parts of orders, nor will they deliver early, even if the desired supplies are

available earlier than the supplier expected. Suppliers may deliver late, due to randomness in

their production capacities. Late orders are given priority over other orders. When supplies

are received, the agent’s bank account is decreased by the order price. The agent’s inventory

of raw materials is unlimited, and there is no penalty for holding a large inventory.

18 CHAPTER 2. PROBLEM DESCRIPTION

2.4 Assembly and Fulfillment

Once an agent has procured the necessary raw materials, it may begin assembling finished

products. The raw materials required for each type of PC are given in the Bill of Materials.

The Bill of Materials also lists the number of assembly cycles required to complete a machine.

Each agent has a fixed number of these cycles available per day, and must therefore create

a daily production schedule. Finished goods are also held in inventory. This inventory can

also be infinitely large, and there is no penalty for holding a large inventory.

An agent fulfills a customer order when it schedules finished goods to be shipped out of

inventory and to the customer. Each agent has an infinite shipping capacity. Shipped items

are received by the customer on the next day. There is no bonus for shipping finished goods

early; the penalty for shipping late is described above. The agent’s bank account is increased

by the order price when the customer receives the goods.

2.5 Market Reports

Each agent also receives periodic reports of the market state. These reports are issued every

twenty days. These reports include the following information:

• Aggregate quantities of each component produced by all suppliers in the last 20 days

• Aggregate quantities of each component sold by all suppliers in the last 20 days

• Average price of each type of PC sold in the last 20 days

• Quantity sold of each PC type in the last 20 days

These reports are made available so that the agents can use the data to plan strategies.

In addition, people watching the game can view their agent’s bank balance, inventory, and

deliveries as the game progresses.

2.6. END OF GAME AND WINNER DETERMINATION 19

2.6 End of Game and Winner Determination

After approximately 200-250 virtual days (which corresponds to roughly an hour of real

time), the game ends. The agent with the highest bank account balance is declared the

winner.

20 CHAPTER 2. PROBLEM DESCRIPTION

Chapter 3

Related Work

Since this year’s Trading Agent Competition will include the inaugural version of the supply

chain management game, there is very little work that has been done by others on this specific

game. However, there are substantial bodies of literature in a wide variety of related fields,

including traditional supply chain management techniques, supply chain decision-support

and automated management software, economics, game theory, artificial intelligence, and

multiagent systems. Results from the TAC Classic competition may also apply, to some

degree, to the TAC SCM competition.

3.1 SCM Techniques Used in Industry

Researchers in the operations research community have contributed a substantial amount

of analysis of the supply chain management strategies actually utilized by businesses and

industry.

Lee and Billington [27] discuss commonly-made pitfalls in supply chain management

practices. Tayur et al. [59] review quantitative approaches to supply chain modeling. Their

discussion primarily focuses on mathematical and computational analysis of supply chain

models. They discuss the design and evaluation of supply contracts, the impact of informa-

21

22 CHAPTER 3. RELATED WORK

tion on decision-making performance, management of product variety, and future research

challenges.

Biswas and Narahari [5] classify supply chain problems into three categories based on the

expected timeframe of the decisions: strategic, tactical, and operational. Strategic decisions

affect the long-term performance of the supply chain, tactical decisions affect medium-term

performance, and operational decisions affect short-term performance. Operational decisions

are under the additional constraint that they must be made in real-time. They further

classify supply chain decisions into four functional categories: procurement, manufacturing,

distribution, and logistics. They also give a list of measures that can be used to quantify the

performance of a supply chain. These measures are useful as metrics for real-world supply

chain situations, but are also useful as measures of the performance of TAC SCM agents.

The measures suggested by Biswas and Narahari include:

• Customer satisfaction. Biswas and Narahari classify customer satisfaction as a

qualitative measure; they note that, in general, customer satisfaction can be a hard

metric to quantify.

• Product quality. Biswas and Narahari also classify product quality as a qualitative

measure.

• Supply chain lead time. In general, this is the time required for the supply chain

to acquire raw materials, plus the amount of time required to convert raw materials

into finished goods, plus the amount of time required to ship finished goods to the

customer.

• Order-to-delivery lead time. This is the amount of time elapsed between the

placement of a customer’s order and the customer’s receipt of finished goods.

• Order fill rate. This is the fraction of customer orders that are immediately met

from existing stock.

3.1. SCM TECHNIQUES USED IN INDUSTRY 23

• Probability of on-time delivery. This is the fraction of customer orders that are

fulfilled by the due date.

• Financial costs. Biswas and Narahari list some sources of supply chain costs, in-

cluding inventories, transportation, facilities, operations, technology, materials, and

labor.

3.1.1 The Kanban Heuristic

One well-accepted supply chain optimization heuristic that is used in industry is the Kanban

heuristic. This heuristic was developed at the Toyota Motor Company in the early 1980s

[49]. “Kanban” is the Japanese word for “card;” the Kanban heuristic utilizes the circulation

of (real or simulated) cards to control rates of production. Each machine in the supply line

starts with some number of cards; a machine is not allowed to process goods unless it

possesses at least one card. When it is done processing, the machine passes one card to

the machine immediately upstream. The last machine in the supply line receives a card

whenever a unit of finished product is consumed by customer demand. This machine then

creates a new unit of finished product, using the results of the upstream machine as raw

materials. It then passes this new card to the upstream machine. This card will flow back

upstream, eventually informing all the machines that they should produce one additional

part. The Kanban heuristic is primarily used as an inventory-control tactic; the size of the

inventories of finished and partially-completed goods is bounded by the number of cards in

the supply chain at any time.

3.1.2 The CONWIP Heuristic

Another supply-chain optimization heuristic is the constant work-in-progress (CONWIP)

strategy [50]. Like the Kanban heuristic, CONWIP attempts to limit the amount of in-

progress work of the supply chain. Kanban achieves this by capping work-in-progress at

24 CHAPTER 3. RELATED WORK

each workstation in the supply chain; CONWIP caps work-in-progress of the supply chain

as a whole. This can lead to a more flexible assignment of work, especially when there

is variability in the supply chain. For instance, if a machine malfunctions in the Kanban

system, all upstream machines will eventually be prevented from doing any work. Under

CONWIP, these machines might be able to continue processing for a longer period of time.

3.2 Software Tools for SCM

A variety of software tools have been developed to aid in the supply chain management

process. Most of these tools fall under the category of decision-support software: they

simulate supply chains and allow users to see the effects of changing various parameters.

Some researchers in academia and industry have also begun to develop tools to automate

increasingly complex supply chain decisions.

3.2.1 Decision-Support Software

Biswas and Narahari [5] present an object-oriented modeling system called DESSCOM that is

intended to provide decision support for supply chain problems. They present a case study

of a real-world liquid petroleum gas supply chain and show how their system facilitates

decision-making in many areas of the supply chain.

Jain et al. [23] present a system that simulates supply chains for semiconductor manufac-

turing. They analyze the supply chain at different levels of detail, and show experimentally

that a well-detailed model of the supply chain provides more accurate decision support than

an abstracted model.

Ettl and Schwehm [14] present an analytical method for modeling Kanban systems. They

use this method along with a general-purpose genetic algorithm to determine allocation of

kanbans and supply chain network configuration. The goal of their algorithm is to minimize

inventory costs while maintaining a desired throughput rate. They present results from a

3.2. SOFTWARE TOOLS FOR SCM 25

set of experiments that compare the results of the genetic algorithm to the results of an

exhaustive search that finds the globally optimal configuration. The relative difference in

inventory levels between the optimal solution and their approximate solution is consistently

under 5%. Since the underlying problem has been shown to be NP-hard, they claim that

their heuristic approach is justified and efficient.

There are also a large number of commercial software tools for supply chain simulation,

modeling, and analysis. These include the IBM Supply Chain Simulator [7], the i2 Technolo-

gies RHYTHM decision-support system [22], and the SAP Advanced Planner and Optimizer

[46].

3.2.2 Automated Supply Chain Management

SAP AG offers a product called mySAP SCM [45] that combines supply chain modeling, de-

sign, and optimization tools with intelligent agents. Their vision is to develop a self-adapting

supply chain management system that “provides total visibility of the order, automates or-

der management, and monitors product uses by customers across the network, replenishing

when necessary, without having any manual intervention, other than exceptions.” [44] They

claim that adaptive software agents improve the effectiveness of their system in two ways:

• Agents provide support for automating information exchange, allowing instant propa-

gation of important information to interested parties.

• Agents can actively monitor the supply chain system for critical events. They can then

form intelligent responses to many of these events, enabling a faster response to many

exceptional conditions.

Walsh [63] investigates market protocols for supply chain automation. He models supply

chains as task dependency networks. He discusses a novel auction protocol that allows

agents in the supply chain to negotiate about resource exchanges. He gives theoretical and

26 CHAPTER 3. RELATED WORK

empirical results that show that this auction protocol produces better solutions to supply

chain problems than other commonly-used protocols (such as contract nets) when resource

contention is an issue.

The MAGNET system [9] is intended as a testbed for multiagent negotiation. One of the

major motivations behind this research is the automation of supply chains. MAGNET allows

self-interested agents to negotiate over complex, coordinated tasks with precedence and time

constraints. These negotiations are carried out in an auction-based market environment.

Collins [10] investigates algorithms for determining winners in MAGNET combinatorial auc-

tions, and the issues involved in implementing a customer agent for this environment.

3.3 Economics and Game Theory

There are a variety of interesting theories in the field of economics that can be used to analyze

the TAC SCM game. The following sections discuss individual rationality, on which much of

modern economic theory is based, Pareto efficiency, which allows one to decide how efficient

an economic system is, and game theory, which is useful for reasoning about multiplayer

games and the characteristics of multiagent systems.

3.3.1 Individual Rationality

Much of the work that has been done in the fields of economics and game theory assumes

that participants in an economic system are individually rational. In simple terms, individual

rationality implies that each participant (or agent) in the system has some preferences, which

can be expressed as a function mapping possible world states to utility values. A rational

agent will then act in a manner such that its personal utility is maximized. McCain [32]

gives two reasons why the assumption of individual rationality is often used in the field of

economics.

1. Individual rationality narrows the scope of the problem: it is substantially easier to

3.3. ECONOMICS AND GAME THEORY 27

predict the behavior of a rational agent than it is to predict the behavior of an irrational

agent.

2. Individual rationality provides a way to assess the efficiency of an economic system. If

an economic system causes a reduction in the rewards available to one agent, without

producing compensating rewards to others, the system is flawed in the sense that the

sum of all the agents’ utilities is not maximized.

There are some who have argued that assumptions of individual rationality are not jus-

tified. Tversky and Kahneman [60] studied cognitive anomalies: situations in which individ-

uals exhibit demonstrably irrational behavior.

In [33], McFadden argues that cognitive anomalies are due to errors in perception that

arise from the way the human mind stores and retrieves information and to errors in process

that lead to inconsistent formulation of problems. He discusses how these effects influence

individuals’ economic behavior and the implications of these anomalies to contemporary

economic analysis.

3.3.2 Pareto Efficiency

McCain suggests that the efficiency of an economic system can be assessed if it is assumed

that agents are individually rational. A commonly-used criterion for evaluating outcomes of

an economic system is Pareto efficiency [38]. An outcome is said to be Pareto efficient if there

is no other outcome in which some individual is better off and no individual is worse off. A

similar measure is Pareto domination: an outcome o1 is said to Pareto dominate an outcome

o2 if someone is better off in o1 than in o2 and no one is worse off in o1. An economic system

or mechanism is said to be Pareto efficient if the mechanism guarantees that it will produce

an outcome which is Pareto efficient. Sandholm [43], in discussing mechanism design, notes

that Pareto efficiency is a measure of global good that does not require inter-agent utility

comparisons. This is a useful because two different agents may exhibit the same preferences

28 CHAPTER 3. RELATED WORK

(i.e., have the same preference ordering over possible outcomes) even if their utility values

for each of these outcomes vary substantially.

3.3.3 Game Theory

There are variety of principles from the field of game theory that could be useful for analysis

of the TAC SCM game. Some games are said to have dominant strategies. This indicates

that some agents playing the game are best off when following a certain strategy regardless

of the strategies used by the other agents. If all the agents have dominant strategies, they

will follow these strategies (if we assume that each agent’s actions are rational.) A game

in which all agents are following the dominant strategy is said to be in dominant strategy

equilibrium. However, in many games, an agent’s best strategy depends on the strategies

chosen by the other agents. If this is the case, a dominant strategy equilibrium will not

occur.

Another equilibrium concept is that of the Nash equilibrium [36]. The Nash equilibrium

is a generalization of the dominant strategy equilibrium. A game is said to be in Nash

equilibrium if, given the strategies that all other agents are currently following, there is no

incentive for any agent to change the strategy it is currently following. The main problem

with the concept of Nash equilibrium is that games are not guaranteed to have a single

Nash equilibrium. Some games may not have a Nash equilibrium [17], while others have

multiple Nash equilibria [26]. In the latter case, it is not generally possible to decide which

equilibrium the agents should (or will) play.

Concepts of equilibrium are useful because they allow for the analysis of agents’ strategies

in games. A game or mechanism is typically considered stable if it exhibits a Nash or domi-

nant strategy equilibrium. However, Sandholm [43] notes that the Nash equilibrium does not

guarantee stability if the agents are able to coordinate and change strategies simultaneously.

Therefore, an environment which allows this sort of collusion is not guaranteed to be stable.

Additional results from the field of game theory are discussed below in the section on

3.4. ARTIFICIAL INTELLIGENCE TECHNIQUES 29

game playing (3.4.1).

3.4 Artificial Intelligence Techniques

It is nearly certain that most TAC SCM agents will utilize techniques from the field of

artificial intelligence. The AI community has developed many algorithms and strategies

which may be useful for approaching aspects of the TAC SCM game. Specific subfields of

artificial intelligence that might be relevant to TAC SCM include game playing, machine

learning, and planning.

3.4.1 Game Playing

Russell and Norvig [42] give a good introduction to the basics of game-playing. They present

descriptions and pseudocode for several commonly-used algorithms and techniques. Mini-

max search is one such algorithm; it was investigated by Von Neumann and Morgenstern [37]

as a technique for mathematically evaluating the value of a game position. The basic mini-

max technique generates the entire game tree, evaluates the terminal states of the game, and

propagates these values up to a node representing the current game state, under the assump-

tion that both players will play perfectly. The straightforward application of minimax search

is typically not practical in interesting domains, because it is not computationally feasible

to generate the entire game tree. Shannon [48] added the idea of a search-depth cutoff and

evaluation functions to the minimax technique; this allows for informed, but imperfect play.

Computational time can be further reduced by using a technique known as alpha-beta [6],

which prunes branches from the search tree that will not affect the final evaluation. Search

techniques based on minimax assume that the rules of the game, the results of each move,

and the full state of the game are perfectly known by the players. When these assumptions

turn out to be incorrect, more sophisticated algorithms are needed.

If an element of chance determines the available moves or the results of each move, such as

30 CHAPTER 3. RELATED WORK

in backgammon, the game tree needs to include chance nodes to account for this randomness.

This modification to minimax, called expectimax, was proposed by Donald Michie [34]; a

big problem with the inclusion of chance nodes is that they add additional complexity to the

search tree, which can make it impractical to search deeply. Ballard proposed a modification

to expectimax that allows alpha-beta pruning on expectimax trees [3].

If the full state of the game is not perfectly known (as happens in many card games,

such as poker), standard game-playing algorithms based on minimax are not likely to be

feasible. In a fairly simple game such as blackjack, there is a limited amount of hidden

information, so it is possible to use chance nodes to model an agent’s uncertainty about the

game state. For a more complex game, the amount of hidden information may render this

approach computationally infeasible.

In the field of generic game-playing, the rules of the game are not necessarily previously

known–either to the agent or to its programmers. This is another challenge for standard

game-playing algorithms such as minimax. Pell proposes such a system, called Meta-Game

Playing (Metagame) in [39]. In Metagame, the rules are given to the agent at runtime, and

the agent is expected to use the rules as constraints for forming a successful strategy.

Levinson also discusses the topic of generic game-playing [29]. Levinson details a system

called MorphII, which is a generic game-player written in the C++ programming language.

It is capable of both blind learning and informed learning. Results of the system on a variety

of simple games are presented and analyzed.

3.4.2 Machine Learning

Russell and Norvig’s book [42] contains a broad discussion of machine learning, including

techniques such as neural networks, decision trees, and reinforcement learning. Mitchell

presents a more in-depth discussion of these and other topics in the field of machine learning

[35]. He defines the field of machine learning as the study of “computer algorithms that

improve automatically through experience.” He discusses the issues in designing a system

3.4. ARTIFICIAL INTELLIGENCE TECHNIQUES 31

that learns and suggests a methodology for framing learning problems such that they are

well-posed and can be solved through a modular design.

The most common characterization of machine learning is that of on-line learning, in

which the agent learns by observing the results of its actions and attempting to determine

which actions lead to good outcomes. It then updates its behavior in an attempt to improve

its performance. However, some problems require off-line machine learning, in which the

agent takes in a large sample of inputs and associated outputs, known as the training set,

and attempts to determine a reasonable function mapping inputs to outputs. The agent

then uses the results of this learning phase to guide its actions at run time. This approach is

often used in situations in which real-time decisions are essential and the learning algorithm

is time-consuming.

Stone [51, 55] has extensively utilized machine learning in the RoboCup soccer simulation

league. He advocates a layered learning approach, in which successive layers of learning build

on the results of previous layers. Specifically, Stone uses off-line neural networks to train

agents in a basic ball interception skill. A more complex skill is that of pass evaluation, in

which an agent has to evaluate the probability that a pass to a given teammate will succeed.

During the training phase of the pass evaluation task, the potential receivers and defenders

are equipped with the ball interception skill developed during the previous phase. A decision

tree is utilized to learn the pass evaluation skill, again in an off-line manner. A higher-level

skill is that of pass selection, in which agents must use their pass evaluation capabilities to

determine whether they should pass the ball and, if so, to which teammate. Stone notes

that the utility of a particular pass selection decision depends primarily on the long-term

performance of the team as a whole (i.e., whether a series of such decisions eventually leads

to a score.) Stone presents a novel reinforcement learning method called TPOT-RL, which is

motivated by Q-learning and explicitly intended for multiagent domains. TPOT-RL is used

in an on-line manner to improve the effectiveness of the team over the course of a game.

Stone verifies the efficacy of the layered learning approach empirically, through controlled

32 CHAPTER 3. RELATED WORK

simulation environments and the actual RoboCup competition. Teams from Carnegie Mellon

University based on this approach won both the simulation league and the small-robot league

in 1998.

Mahadevan and Theocharous [31] utilize reinforcement learning to optimize a simulated

manufacturing scenario. They use an average-reward reinforcement learning algorithm,

called SMART [30], to maximize delivery of finished product to consumers while keeping

inventory levels low. They compare SMART with the Kanban heuristic, and show that both

strategies are effective in maximizing delivery of finished product, filling 98% of customer

demand. However, SMART outperforms the Kanban heuristic at minimizing inventory levels

in a sample scenario by 15-30%.

Additional literature that discusses the utilization of machine learning concepts is can be

found in Sections 3.5.3, 3.5.2, and 3.6.

3.4.3 Planning

In problem-solving and game-playing, the actions taken by an agent at a specific point

significantly affect the actions available to the agent (and possibly its opponents) later on.

This is reasonable in some domains, but many real-world problems do not contain such

stringent dependencies. Planning algorithms can take advantage of this flexibility to achieve

better performance. The Partial-Order Planner (POP) algorithm presented by Russell [42]

utilizes a restricted version of situation calculus known as STRIPS [15] to plan actions. As

its name implies, POP represents plans as a partial order of actions. Analysis shows that the

POP algorithm is both sound and complete, which means that it will always find a solution

if one exists and that any solution POP proposes will be a correct solution.

However, the power of the POP algorithm is limited by the expressiveness of the STRIPS

language. Ideally, planners should be able to represent plans hierarchically, be able to reason

about time and resource constraints, and be able to reason about more expressive operators

than those allowed by the STRIPS language, such as conditional effects, nondeterministic

3.4. ARTIFICIAL INTELLIGENCE TECHNIQUES 33

effects, and universal quantification. Erol et al. [13] present a planning system that supports

hierarchical decomposition. Russell presents a planner called HD-POP that is based on this

planner. The notion of hierarchical decomposition makes intuitive sense because it seems to

be the way that most people plan their actions: by breaking a large problem up into smaller

subproblems and then planning the actions that will solve the subproblems. On the other

hand, if the large problem is not broken up “correctly,” it may be impossible to devise a

consistent plan, even if the undecomposed problem does have a consistent solution. The

O-PLAN algorithm [4] and its successors (e.g., PlanERS-1 [16] and OPTIMUM-AIV [1])

incorporate representations of time and resource constraints.

Tambe extends planning to the multiagent domain in [58]. He proposes a system, based

on the joint intentions framework [28], that explicitly represents team goals, team plans, and

models of teamwork. His model of teamwork provides domain-independent rules that outline

each agent’s commitments and responsibilities toward the team. He gives a procedure which

an agent can use to recover from the failure of another team member. This procedure allows

agents to change roles during the execution of plans, which increases the probability that

these plans can be carried out successfully. He applies this model of teamwork to a helicopter

combat simulation and the RoboCup simulation league, and gives an anecdotal examination

of a variety of cases in which the failure-detection and recovery capabilities of this system

are useful. Tambe also presents results which show that these modifications to the joint

intentions framework lead to a reduction in the amount of communication required.

3.4.4 Reasoning under Uncertainty

Planning and reasoning are significantly more difficult in the presence of uncertainty. If an

agent is unable to obtain complete and correct information about its environment, it needs to

have the ability to deal with this uncertainty in a logical manner. Two main strategies that

have been used to deal with uncertainty are conditional planning and execution monitoring.

In conditional planning, also known as contingency planning, agents construct a plan that

34 CHAPTER 3. RELATED WORK

accounts for the possible unexpected events (contingencies) that could arise. The execution

monitoring strategy requires that the agent monitor its progress while executing the plan. If

the agent determines that the current plan has failed, it must replan, finding a new way to

achieve its goals given what it now knows about the state of the world. Russell [42] outlines

a possible implementation of a conditional planner and a replanning agent. He also notes

that a replanning agent may wish to learn in response to failed expectations, such that its

future performance can be improved.

Pollack and Horty [40] discuss the issues involved in multiagent plan management in

dynamic environments. Plan management introduces additional concepts not traditionally

handled by planning methods, which are typically concerned only with the generation of

plans. Plan management supports the notion of commitment to plans: upon creating a

plan, an agent will generally attempt to avoid creating new plans that conflict with the plan

just created. However, an unexpected, serendipitous consideration might arise, such that

the agent would prefer to give up its commitment to the old plan, choosing instead to take

advantage of the new situation. In order to notice that such a consideration has arisen, an

agent also needs to monitor its environment. Russell also indicates the need for environment

monitoring in his discussion of the conditional planner and the replanning agent.

However, replanning agents need to decide which subset of the environmental features

they should monitor; in general, it is too costly to attempt to continuously monitor the

entire state of the world. Veloso et al. [61] propose the idea of rationale-based monitoring.

In this scheme, the planning system keeps track of the rationale for the decisions it makes

and monitors only the environmental changes that might affect the planning rationale. They

argue that the planning system should also keep track of the reasons why it chose the current

plan over other alternate plans. If the environment changes in such a way that these reasons

are no longer valid, it may be beneficial to choose one of the alternate plans instead. They

give experimental results which show that rationale-based planning generates robust plans

and can be done in an efficient manner.

3.5. MULTIAGENT SYSTEMS 35

3.5 Multiagent Systems

One common way to view multiagent systems is as distributed artificial intelligence (DAI). In

DAI, agents cooperate to solve AI problems in a distributed manner. Researchers in the mul-

tiagent community have developed techniques for distributed problem-solving, distributed

planning, distributed search algorithms, and distributed learning, among others. Stone [52]

observed that some teams used the distributed AI approach in the TAC Classic games; for

example, some teams used two separate agents to bid on the different types of auctions.

However, many researchers have also dealt with the possibilities that agents may be self-

interested, or even competitive (such that an agent may be able to increase its own utility

by hindering the utilities of other agents). In order to achieve optimal results under these

assumptions, each agent generally must maintain models of the other agents in the system.

In both cooperative and competitive setups, it is often necessary for agents to communi-

cate and interact. Huhns and Stephens [21] discuss such multiagent societies, including the

motivations behind such societies, properties of these societies, methods of communication,

speech act theory, ontologies, and methods to achieve multiagent coordination, cooperation,

and negotiation.

3.5.1 Decision-Making: Voting and Auctions

Some multiagent decision-making strategies that have been proposed include voting, auc-

tions, and market economies. Sandholm [43] discusses a variety of such decision-making

strategies under the assumption that agents are rational and self-interested. He notes that

these strategies can be evaluated according to several different criteria, including social

welfare, Pareto efficiency, individual rationality, stability, computational efficiency, and com-

munication efficiency.

Sandholm discusses voting as a social choice mechanism. It is generally considered de-

sirable that the voting protocol will lead to truthful declarations of the agents’ preferences.

36 CHAPTER 3. RELATED WORK

This may not be the case if an agent can benefit by lying about its preferences. An idea

from game theory, known as mechanism design, explores the design of protocols that do lead

to truthful declarations. The revelation principle [41] states that, if a negotiation protocol

implements some social choice function in a Nash equilibrium, then this function is imple-

mentable in Nash equilibrium via a single-step protocol in which the agents reveal their

preferences truthfully. This is true even if the original negotiation protocol required multiple

steps or if the agents’ strategies under the original protocol were not necessarily truthful.

Sandholm’s discussion of auctions is particularly relevant to the TAC SCM scenario,

since customer orders are allocated by an auction. This is a slightly different form of auction

than the traditional auction, because the agent with the lowest value wins. However, the

results from auction theory still apply. Auction settings can be classified into three groups,

depending on how the agents value the items. In a private value auction, the value of each

item is determined solely by the agent’s preferences. In a common value auction, the value

of each item is determined entirely by the other agents’ valuations of the item. A correlated

value auction is one somewhere in between, in which an agent’s value is partially determined

by its own preferences and partially determined by the preferences of others.

Sandholm discusses four commonly-used auction protocols: the English auction, the

first-price sealed-bid auction, the Dutch auction, and the Vickrey auction. The TAC SCM

scenario uses the first-price sealed-bid auction, in which each agent submits a single bid, and

the bids of other agents are not revealed. The highest-bidding agent wins the auction and

pays the amount of its bid. Under this auction protocol, an agent’s bidding strategy needs

to take into account its own valuation of the item and any information or beliefs it may have

regarding the valuations of other agents. Obviously, an agent’s bid should not be greater

than its own valuation of the item, but it can attain the item for less than this valuation if

it places a bid that is just a bit higher than the bid of the agent with the second-highest

valuation. Under the first-price sealed-bid auction, it is therefore useful for agents to make

strategic bids that depend upon the bidding habits of other agents. However, since the bids

3.5. MULTIAGENT SYSTEMS 37

are sealed, it is often hard to determine the true preferences of the other agents. Furthermore,

in any common value or correlated value auction, the best strategy for an agent is to bid

less than its own valuation. This is due to the “winner’s curse,” in which an agent that bid

its true valuation and won an auction knows that its valuation was too high (due to the

fact that the other agents bid lower). Winning an auction in this setting therefore actually

amounts to a loss of money, unless every agent bids less than its true valuation. This makes

it even more difficult to determine the true valuations that other agents place on auctioned

items.

Sandholm also discusses the efficiency of the allocation of items and the expected revenue

of the auctioneer under each of the auction protocols. It turns out that, under reasonable

constraints, each of the protocols allocates auction items Pareto efficiently to the bidders

who value them most, and that all of the auction protocols give the same expected revenue

to the seller.

Sandholm also discusses interrelated auctions, in which a series of different items are

auctioned one at a time, and an agent’s valuation of a given item depends on whether or

not the agent wins some other item. He shows that, under these circumstances, inefficient

allocations can occur, and that there can be incentives to counterspeculate.

3.5.2 Learning to Play Better Against an Opponent

Since the success of a TAC SCM agent is likely to depend greatly on the strategies of other

agents, it is reasonable to assume that learning the behaviors of other agents may be vital

to good performance.

A game-player that tries to analyze and learn the strategy of its opponent is given in

Carmel and Markovitch [8]. They discuss the benefits of using a model of the opponent’s

strategy, and give an algorithm called M* that attempts to exploit the opponent’s strategy.

M* is a generalization of the standard minimax algorithm that also uses the search depth and

evaluation function of the opponent to drive the search. Assuming that the search depth

38 CHAPTER 3. RELATED WORK

and evaluation function of the opponent are known perfectly, M* always selects a move

with a value greater than or equal to the move that would have been returned by minimax.

Pruning techniques, such as alpha-beta, which can be applied to minimax trees also apply to

M* trees; however, fewer nodes will be pruned by alpha-beta unless the player’s evaluation

function agrees with that of the opponent. This raises concerns (not discussed in their paper)

that the M* search may take significantly longer to choose a move than standard minimax

search. Also, M* search assumes that the opponent’s search depth and evaluation function

are known. Since it is not usually the case that these features of the opponent’s strategy

are known, Carmel and Markovitch also present and discuss algorithms which can be used

to attempt to learn these features by analyzing a history of the opponent’s games.

Zeng and Sycara [64] present a decision-making model, called Bazaar, that is explicitly

designed to support easy incorporation of learning. Bazaar provides a multi-issue negotiation

framework. Within this framework, Zeng and Sycara model learning as a Bayesian belief

update process. This Bayesian framework incorporates the knowledge and beliefs that the

agent has about the environment and other agents. They give theoretical and experimental

results that indicate that this learning strategy is beneficial within the context of multi-issue

negotiation. They indicate that they intend to test the application of this framework to more

complex domains, such as supply-chain management; however, no literature documenting

such an attempt could be found.

3.5.3 Learning to Benefit from Market Conditions

Vidal and Durfee [62] investigate the use of learning models of other agents in a multiagent

information economy. They consider both buying and selling agents, and classify these agents

into groups based on the sophistication of their models of other agents. A 0-level agent does

not model the behavior of other agents whatsoever, instead choosing to base its decisions

wholly on the state of the world. A 1-level agent is aware that other agents are participating

in the economy, and attempts to take this into account when making its decisions. However,

3.6. TAC CLASSIC 39

1-level agents have no idea how the other agents make their decisions, so they assume that all

other agents base their decisions solely on the state of the world; that is, they model all other

agents as 0-level agents. The most sophisticated agents in Vidal and Durfee’s taxonomy are

2-level agents, which model all other agents as if they were 1-level agents. Vidal and Durfee

briefly discuss the possibility of recursively defining n-level agents, as agents which model

all other agents as (n-1)-level agents, but have not performed any in-depth analysis of any

agents more sophisticated than 2-level agents. They claim that there is no obvious way

to theoretically analyze how different populations of agents would interact, so they rely on

empirical testing to determine the benefits gained by incorporating sophisticated models of

other agents. They have performed many such tests, varying the levels of sophistication of

both the buying and selling agents. In general, higher-level agents perform better than their

lower-level counterparts. Through analysis of these experiments, Vidal and Durfee claim

that the rewards of sophisticated modeling start to diminish as the other agents become

“smarter.” They hypothesize that agent designers will therefore converge to some level of

agent sophistication that balances the complication of detailed models of other agents with

the benefit to be gained from taking more well-informed actions.

3.6 TAC Classic

Much related work has been done recently (since 2000) on implementations of agents for the

TAC Classic game. However, it is not clear to what extent the previous work done on the

original TAC Classic game will be useful for development of TAC SCM agents, since the

rules of the game are completely different. This section contains a review of the related work

on the TAC Classic game in areas in which the results seem applicable to the TAC SCM

game as well.

In the TAC Classic game, each player is a travel agent. These travel agents each have eight

clients, with randomly-chosen preferences regarding the details of a trip. A complete travel

40 CHAPTER 3. RELATED WORK

package requires round-trip airline ticket reservations, hotel reservations for the duration of

the trip, and tickets to a variety of entertainment events. These three types of components are

sold in three different auction settings. The winner of the game is the agent that maximizes

the total satisfaction of its clients. A full overview of the game can be found at the TAC

2003 web site [56].

Schapire et al. utilized machine learning in their implementation of an agent (ATTac-

2001) for TAC-01 [47]. This agent uses machine learning to predict prices in the TAC Classic

auctions. They concentrate on learning the prices for the hotel auctions. To do this, they

used a set of data from previously played games to train the agent. The agent uses several

features to predict hotel prices, including the length of time remaining in the game, the

current asking price for rooms whose auctions have not closed, the selling price for rooms

whose auctions have closed, the current prices of airline tickets, the number of players playing

the game, and a bit vector representing the identities of the players participating in each

game. During the course of the game, many of these values will be known by the agent,

but some will be unknown. Schapire et al. therefore classify this problem as a conditional-

density-estimation problem. That is, given what the agent knows about the world state, the

agent needs to estimate a conditional distribution of prices. They present a novel learning

algorithm that reduces this problem to a multiclass, multi-label classification problem and

solves this problem using a modification of a boosting algorithm that they had previously

developed [11]. The results of the TAC 2001 competition show the efficacy of their approach:

ATTac-2001 attained the second-highest raw score in the game as well as the highest score

after handicapping for the relative difficulties of pleasing each of the agents’ clients in the final

round. They also present additional experimental results in a controlled setting that show

that this learning strategy performed better at price prediction than a variety of simpler

learning strategies. These experiments also show that price prediction errors in the TAC

Classic game are inversely related to final scores, with a statistical correlation of -0.88.

Stone et al. [54] discuss the use of an integer linear programming approach that optimally

3.6. TAC CLASSIC 41

solves the problem of allocation of goods to TAC Classic clients. This method may be useful

in determining the daily production schedule of TAC SCM agents. Cormen et al. [12] define

a linear programming problem as one in which “... we are given an m × n matrix A, an

m-vector b, and an n-vector c. We wish to find a vector x of n elements that maximizes

the objective function
∑n

i=1 cixi subject to the m constraints given by Ax ≤ b.” An integer

linear programming problem is a linear programming problem where the values of xi must

be chosen from the set of integers. Greenwald and Boyan [18] utilized the A∗ heuristic search

algorithm in their TAC Classic agent (RoxyBot) to efficiently determine allocations of goods

that approximate optimality.

M. He and N. Jennings discuss the implementation of SouthamptonTAC, the third-place

agent in TAC-01, in [19]. A slightly modified version of this agent took second place in

TAC-02 [20]. He and Jennings also observe that the hotel auctions are the most important,

yet most difficult part of the TAC Classic competition. Their agent utilizes a fuzzy reasoning

approach to predict the likely clearing prices of hotel auctions. They devised a set of hand-

coded fuzzy rules that describe the likely increase of the price of a hotel auction (between

the current time and the auction’s closing time) given what is currently known about the

state of the world. This representation allows them to encode such rules as “IF the asking

price of Hotel 2 is high AND the change in asking price of Hotel 2 in the last minute is

quick AND the auction for Hotel 1 closed early in the game THEN the change in price of

Hotel 2 will be very big.” Their post hoc analysis of the TAC-02 competition notes that the

outcome of a given game depends greatly on the risk-taking behavior of the participants.

Some agents are risk-averse, choosing to hold off on buying flight tickets until they have

secured appropriate hotel reservations, while other agents are risk-seeking, choosing to buy

many flight tickets at the very beginning of the game, when the prices of flights are lower.

They classify TAC Classic games as competitive, semi-competitive, and non-competitive,

in which the most competitive games contained three or more risk-seeking agents. In this

competitive setting, hotel prices will typically be very high, so the flexibility of a risk-averse

42 CHAPTER 3. RELATED WORK

agent is advantageous. In the non-competitive setting, the risk-taking agents perform better,

since they receive lower prices on airline tickets and do not need to pay a premium to secure

appropriate hotel reservations. This observation is interesting because it seems to indicate

that the best strategy in a TAC Classic game is to simply choose a different strategy than

the one used by the majority of the other agents. It remains to be seen whether this will be

the case in the TAC SCM game as well.

3.7 Software for the TAC SCM Game

The Swedish Institute of Computer Science (SICS) was primarily responsible for developing

the server on which the TAC SCM simulation runs. A connection with this server is required

in order to play the TAC SCM game. The server’s source code is supposed to be open to the

general public, but SICS has not made it available yet. Instead, they have a server running

in a public location to which agents can connect. This state of affairs is less than optimal

for a variety of reasons:

• Some aspects of the TAC SCM rules are vague in the current specification of the game.

Having the source of the server would allow us to quickly determine what is intended

in these situations.

• Sometimes the public server is inaccessible, presumably due to network or software

problems.

• We would like to be able to test some strategies and tactics without disclosing our

agent’s behavior to a third party.

• There are variety of parameters which affect the SCM game which should be relatively

easy to change, such as the number of days in a game, the number of real-time seconds

in a game, the interest rate, the average number of customer RFQs per day, and so on.

For the purposes of testing, it would be preferable if we could set these parameters to

3.7. SOFTWARE FOR THE TAC SCM GAME 43

known values. This is especially important for parameters such as the interest rate and

average number of RFQs per day, since they are chosen randomly at the beginning of

the game and substantially affect the outcome of the game.

For these reasons, we hope that the source to the TAC SCM server will be made available

to the public soon.

In addition to the server, SICS also provides a software package called AgentWare. Agent-

Ware is written in the Java programming language and is intended as an interface for interac-

tion with the TAC SCM server. AgentWare also provides a graphical interface which shows

the status of the agent, including a graph of the agent’s bank account, histograms of current

inventory levels, and textual output of important game events. A screenshot of this interface

is pictured in Figure 3.1. The AgentWare code also includes a default “Dummy Agent” that

is primarily intended as an example of how to use the AgentWare server interface. This

agent plays the SCM game through the server, following a very simple strategy.

Figure 3.1: A screen capture of AgentWare’s graphical user interface.

44 CHAPTER 3. RELATED WORK

The source code for AgentWare is not yet publicly available from the TAC web site,

but the source is available to parties who express a desire to alpha-test the software on

the tac-dev mailing list [57]. We therefore possess a copy of the most recent version of the

AgentWare code, which we are using in the development of our own TAC SCM agent. A

further discussion of the use of AgentWare in our implementation can be found below in

Section 5.

Chapter 4

Analysis

This chapter presents a detailed analysis of the TAC SCM game. It presents theorems

and equations relevant to the game itself, suggests metrics for the evaluation of agents, and

proposes strategies that ideal TAC SCM agents could use to solve various problems. Some of

these strategies may require calculations that are too complex (in terms of computation time

required) to be feasible under the time constraints of the TAC SCM domain. However, we

have chosen to include these strategies in this section for the sake of discussion; further work

is needed to determine the actual computational times required by each strategy. We may

be able to approximate optimal solutions to computationally expensive problems through

the use of heuristic methods.

4.1 Interest Rate

To be precise, most of the calculations done by a TAC SCM agent need to consider the

interest rate. The annual interest rate (interest) during a TAC SCM game is randomly

chosen from a uniform distribution over the range [10%, 20%]. This interest rate is applied

daily. The net effect of interest is to cause transactions occurring at the beginning of the game

to be somewhat more important than transactions occurring at the end of the game. When

45

46 CHAPTER 4. ANALYSIS

considering the value of a transaction, an agent might want to consider the transaction’s

value with respect to the current timeframe or with respect to its value at the end of the

game (which will be magnified due to the effect of interest). As long as an agent selects

one of these conventions and uses it consistently, its decisions should be equivalent.1 Our

group has chosen to represent expected values with respect to the current time. All interest

calculations presented in this thesis therefore follow this convention.

A well-known result from the field of economics gives the amount of money A accumulated

after n years based on an initial investment of P and an annual interest rate r:

A = P × (1 + r)n. (4.1)

4.2 Bottlenecks

In order to assess the performance of TAC SCM agents, it is useful to be able to determine

the bottlenecks of the TAC SCM market. More formally, we can pose the following question:

what factors limit the number of PCs produced in a TAC SCM game? There are basically

three answers to this question: the bottleneck could be in the number of PCs demanded in

customer RFQs, in the production capacity of the agents’ factories, or in the amount of PC

components available from suppliers.

We can predict the maximal number of PCs on a day with the following equation:

productionPCs = min(demandPCs, production capacityPCs, supplies availablePCs). (4.2)

We define the bottleneck of the TAC SCM game on some day d as the factor which limits

the global production of PCs on day d. A demand bottleneck is in effect if demandPCs <

production capacityPCs and demandPCs < supplies availablePCs; we can similarly define

the analogous terms production bottleneck and supply bottleneck.

1This result is due to personal correspondence with Alex Babanov.

4.2. BOTTLENECKS 47

Equation 4.2 assumes that, if production capacity and available supplies are sufficient,

every customer RFQ will receive at least one bid at or below its reserve price. This is a

reasonable assumption because customers’ reserve prices are at least double the maximum

price of the components used to make the PC, so an agent which has the capability to fulfill

an RFQ will never lose money by bidding at the reserve price of the RFQ.

To make use of Equation 4.2, we need to clarify what is meant by the quantities

demandPCs, production capacityPCs, and supplies availablePCs.

We define demandPCs as the actual daily customer demand for PCs and can calculate

this quantity by multiplying the number of RFQs per day by the mean quantity of PCs

requested per RFQ:

demandPCs = # RFQs×RFQ quantity.2 (4.3)

We define production capacityPCs as the maximum total number of PCs that can be

produced daily by agents’ production lines. We calculate this value under the assumption

that each agent has sufficient supplies for production of these PCs. Each agent has the ability

to utilize 2000 assembly cycles per day. The number of assembly cycles cyclesi required to

assemble a PC with type i is given in the TAC SCM specification [2]. PCs made of more

expensive components have higher cycle times. The cheapest computers only require four

assembly cycles, while the most expensive computers require seven. Throughout this section,

we will make the assumption that each type of PCs is produced in equal quantities. Under

this assumption, we can calculate the number of cycles required to assemble an “average”

PC as:

cyclesavg =

∑16
i=1 cyclesi

16

=
88

16

= 5.5. (4.4)

2x̄ denotes the mean of a sample chosen from a population with mean µ. E[x] denotes the expected value
of a variable x. E[x] = E[x̄] = µ.

48 CHAPTER 4. ANALYSIS

We can then calculate production capacityPCs by multiplying each agent’s daily produc-

tion capacity by the number of agents and dividing by cyclesavg:

production capacityPCs =
2000 cycles/day×# agents

cyclesavg

=
2000

5.5
×# agents. (4.5)

We define supplies availablePCs as the number of PCs that can be built from the sup-

piles available in a day, assuming that suppliers are producing at maximal capacity. Every

PC requires four supplies: one each from the categories of CPUs, motherboards, memory

modules, and hard disks. We will assume that components of each of these categories are

produced with equal frequency. This is a reasonable assumption because the TAC SCM rules

specify that nominal production capacity is equivalent for each component category. Then

supplies availablePCs is equal to suppliesmax/4, where suppliesmax is the maximum number

of supplies produced in a day.

To calculate suppliesmax, we need to determine the amount of supplies produced daily

by each of the eight suppliers. A supplier i has a production capacity capacityi that is

determined on each day d by a mean reverting random walk with a lower bound, as specified

in the TAC SCM specification:

capacityi(d) = max(0, capacityi(d− 1)

+ random(−0.05, 0.05)× Cnominal

+ 0.01× Cnominal − capacityi(d− 1)).

(4.6)

Cnominal is the supplier’s nominal capacity, which is specified as 500 components per

day. capacityi(0) = Cnominal, which is used in the calculation of capacityi(1), the supplier’s

production capacity on the first day of the game.

Given the definition of capacityi(d) and the assumption made earlier, we can now calculate

4.2. BOTTLENECKS 49

supplies availablePCs for a given day d:

supplies availablePCs(d) =

∑8
i=1 capacityi(d)

4
. (4.7)

We can now combine the results of Equations 4.2, 4.3, 4.5, and 4.7 to predict the maximal

number of PCs produced in a day d:

productionPCs = min

(
RFQs×RFQ quantity,

2000

5.5
×# agents,∑8

i=1 capacityi(d)

4

)
.

(4.8)

4.2.1 Use of Bottlenecks in Post Hoc Game Analysis

Equation 4.8 has the potential to be a powerful tool for post hoc analysis of TAC SCM games,

since all the needed values are known to the server for each day. It would be interesting to

analyze the behavior of agents when the market is constrained by each of the three possible

bottlenecks. It may also be interesting to note what happens at the boundary cases when

the market is constrained by two of these factors or when the market is in the process of

switching from one predominant bottleneck to another.

4.2.2 Bottleneck Analysis of a Typical Game

Let us consider a typical game. In such a game, the initial average number of customer

RFQs is 200 per day. For simplicity, we will assume that the number of RFQs per day is

always exactly 200, and that suppliers’ daily capacity is always the nominal capacity of 500

components per day. We can then substitute these values into Equation 4.8 to determine

50 CHAPTER 4. ANALYSIS

the expected number of PCs produced per day:

productionPCs = min(demandPCs, production capacityPCs, supplies availablePCs)

= min(200× 10.5,
2000

5.5
× 6,

∑8
i=1 500

4
).

= min(2100, 2182, 1000)

= 1000. (4.9)

This result shows that the most likely bottleneck for a typical TAC SCM game is the

amount of available supplies. In fact, the availability of supplies will be the most probable

bottleneck as long as the number of RFQs per day is greater than 95. (If # RFQs = 95, then

E[demandPCs] = 95× 10.5 = 997.5.) Since the initial average number of customer RFQs is

chosen randomly from a uniform distribution over the range [80, 320], approximately 6.25%

of games will start off with a demand bottleneck. A greater number of games might enter a

demand bottleneck after some period of time due to fluctuations in the average number of

customer RFQs.

Agents’ production capacities are not likely to be a bottleneck in any game in which

there are more than two agents. However, a single agent could be limited by its production

capacity if it acquires substantially more supplies than its opponents.

4.2.3 On-Line Bottleneck Prediction

In order to be of use during game play, Equation 4.8 needs to have predictive power. An

agent can then use the equation to predict future market bottlenecks and plan for these

contingencies. An agent which has the capability of estimating future values of # RFQs

and capacityi would be able to use Equation 4.8 to plan for the future. The development of

a means of estimating the future values of these parameters has not yet been pursued; this

remains as an interesting area for future work.

4.3. MAXIMUM SCORE OF A SINGLE AGENT 51

4.3 Maximum Score of a Single Agent

Given the results presented above, we can now calculate the maximum score that an agent

can possibly attain in a TAC SCM game. We will begin by bounding the score that an agent

can achieve in a single day.

Theorem 1 (Maximum Daily Score of an Agent).

∀a ∈ agents, daily score(a) ≤ 2.15× 106.

Proof. Assume that an agent is the only participant in a game. Such an agent is then able

to acquire all the available supplies if it desires and can win any customer RFQ by placing

a bid at the reserve price specified by the RFQ. Given sufficiently high numbers of RFQs

and supplier production levels, such an agent will be limited by the assembly capacity of its

factory. This agent must therefore decide which type of PCs to produce. Since customers’

reserve prices are a multiple of the base price of the components, an agent looking to maximize

its profit under this scenario needs to choose to manufacture the PC that has the highest

ratio of base price to production cycles required:

PC type = arg max
i

base pricei

cyclesi

. (4.10)

Given the Bill of Materials and Component Catalog used in the TAC SCM specification,

there are two values of i which maximize this equation: 5 and 13. Both of these PC types

have a base price of 2150 and require 5 assembly cycles to build. The value of this ratio is

therefore 2150/5 = 430.

Given its production capacity of 2000 cycles/day, this agent can manufacture 400 such

PCs per day. Assuming a sufficiently large number of RFQs, the agent can bid very near

to 3 times the base price of these PCs, attaining a total revenue of 2.58 × 106 per day. By

ordering in advance, this agent can receive its supplies at half of the base price, so its total

52 CHAPTER 4. ANALYSIS

costs will be 0.43×106 per day. Its total profit per day is 2.58×106−0.43×106 = 2.15×106.

Given Theorem 1, we can now calculate the maximum score of an agent in a TAC SCM

game that is d days long. We do this by considering the maximum daily score and the effect

of interest.

Theorem 2 (Maximum Final Score of an Agent).

∀a ∈ agents, final score(a) ≤
d∑

i=1

2.15× 106 × (1 + interest)
i
d .

Proof. An agent’s also depends on the effect of interest. We can use Equation 4.1 to find the

amount of end-game profit due to the agent’s profit on a day. Assume that there are i days

remaining in the game. Then P = 2.15× 106, r = interest, and there are i
d

years remaining

in the game. (Since interest calculations are done at the end of each day, there is still “one

day remaining” even on the last day of the game.) The total amount of money accumulated

at the end of the game due to the profit P attained on a day i is then:

A = 2.15× 106 × (1 + interest)
i
d . (4.11)

In Theorem 2, i represents the number of days remaining in the game; we are therefore

summing the maximum profits for each day in the game, which gives us the maximum final

score.

4.4 Maximum Total Score for a Six-Agent Game

In this section, we attempt to place an upper bound on the sum of agents’ scores in a six-

agent TAC game. The results from Section 4.2 suggest that, in a typical six-agent game, the

4.4. MAXIMUM TOTAL SCORE FOR A SIX-AGENT GAME 53

bottleneck of the system will be the availability of supplies.

Theorem 3 (Approximate Maximum Total Score of a 250-Day Game).

For nearly all g ∈ 250-day-long games, total final score(g) ≤ 1.3× 109 × (1 + interest).

Proof. Equation 4.6 is used to determine the available supplier capacity on a day d. We

could obtain an upper bound on the quantity of supplies available in a game by assuming

that the random number generator will always choose the value 0.05, which leads to the

highest possible supplier capacity. However, this is not a very useful upper bound because

it is very unlikely that the random number generator will always choose the highest possible

value.

We have therefore chosen to determine an upper bound on supplier capacities by per-

forming a simulation of supplier capacities. Each trial simulates the production capacities

of the eight suppliers in a TAC game. The length of a TAC SCM game was set to 250

days, since that is the maximum value suggested in the most recent draft of the TAC SCM

specification. Each day, a random value in the range [−0.05, 0.05] is generated for each sup-

plier and used to update the production capacity of that supplier according to Equation 4.6.

This new capacity is then added to the total quantity produced by the supplier. At the end

of the trial, the total quantities of CPUs, motherboards, memory modules, and hard disks

are calculated. The maximum production of PCs in a trial is the minimum of these four

quantities. This simulation was run one million times. The maximum possible production

of PCs over the million runs was found to be 276,494. The results of these simulation runs

suggest that 276,494 is a practical upper bound on the number of PCs that can be produced

in a 250-day TAC SCM game.

Assuming a sufficiently large number of RFQs, each agent can bid very near to three

times the base price of each PC produced and still have sufficient orders to sell all these

PCs. Since customers’ reserve prices are a multiple of the base price of the components, an

54 CHAPTER 4. ANALYSIS

agent looking to maximize its profit under this scenario needs to choose to manufacture the

PC that has the highest base price:

PC type = arg max
i

base pricei. (4.12)

Given the Bill of Materials and Component Catalog used in the TAC SCM specification,

there are two values of i which maximize this equation: 8 and 16. Both of these PC types

have a base price of 2350. The total revenue gained by all agents over the course of a game

is then 276494× 2350× 3 = 1.9492827× 109. Since the suppliers’ production capacities are

full, supplies will never be acquired at a discount from the base price. The total supply cost

incurred by all agents is therefore total cost = 276494× 2350 = 0.6497609× 109. The total

profit is then 1.2995218× 109.

We also need to take interest into consideration. For the sake of simplicity, we will assume

that the entire profit is achieved on the first day of the simulation; the sum of the agents’

scores at the end of the game is then:

total final score = 1.2995218× 109 × (1 + interest). (4.13)

The source code of the simulation used to approximate maximum PC production can

be found in Appendix A. Further simulation trials were performed on 200-day-long games

(because 200 days is the minimum suggested in the most recent draft of the TAC SCM

specification) and 56-day-long games (because the publicly-accessible TAC SCM server is

currently configured for 56-day-long games). The maximum number of PCs produced in a

million trials of the 200-day-long game was 226739; the maximum number of PCs produced

in a million trials of the 56-day-long game was 63540. Using reasoning similar to that

given above, we can determine that the practical maximum score in a 200-day-long game

4.5. THE COST EFFICIENCY METRIC 55

is approximately bounded by 1.066× 109 × (1 + interest) and that the practical maximum

score in a 56-day-long game is approximately bounded by 2.986× 108 × (1 + interest).

4.5 The Cost Efficiency Metric

The only significant financial cost in the TAC SCM game is the cost of raw materials, which

need to be attained by requesting quotes from the appropriate suppliers. Penalties from

unfulfilled customer orders can also considered as costs. One useful performance metric is

what we call cost efficiency: the proportion of income to costs.

cost efficiency =
revenue + interest

supply costs + penalties
. (4.14)

A higher cost efficiency directly translates into higher profit over the course of a game.

Specifically, an agent’s cost efficiency can be related to its profit (final score) by the following

equation:

profit = (cost efficiency − 1)× (supply costs + penalties). (4.15)

This equation allows us to view the solution to the TAC SCM game as an optimization

problem: we want to find the balance of cost efficiency, supply costs, and penalties such

that this profit equation is maximized. (Since this is a multiagent competition, we are also

interested in doing whatever we can to minimize the value of this equation for the other

agents.) An agent with high cost efficiency orders raw materials inexpensively, sells finished

goods at high prices, and incurs few penalties. This metric allows us to evaluate agents by

comparing agents’ cost efficiencies to theoretical limits.

Theorem 4 (Maximum Cost Efficiency). The maximum cost efficiency of any agent in

the TAC SCM game is 7.2.

Proof. There are four quantities that govern cost efficiency: revenue, interest, supply costs,

and penalties. All of these quantities are non-negative. To attain the maximum cost effi-

56 CHAPTER 4. ANALYSIS

ciency, we therefore want to maximize revenue and interest while minimizing supply costs

and penalties. We assume that the supply costs are strictly positive. (If not, the agent will be

unable to manufacture any PCs and is therefore not very interesting.) The prices of supplies

can be discounted from their base prices by a factor of as much as 50% (see Section 2.3).

An agent that seeks to minimize its supply costs would therefore only order supplies when

they were available at a 50% discount. Such an agent would also aim to incur no penalties,

which could be achieved by only bidding on RFQs that can be immediately fulfilled from

existing inventory. Given these supplies, the agent must then act to maximize its revenue

and interest. The reserve price specified in a customer RFQ for PCs of type pci is chosen

from a uniform distribution over the interval [2 × base price(pci), 3 × base price(pci)]. An

agent that maximizes cost efficiency would therefore only bid on RFQs with reserve prices

very close to the upper boundary of reserve prices and would always bid the reserve price of

these RFQs. Furthermore, so as to maximize interest, the agent would only bid on RFQs at

the very beginning of the game. If the cost of the raw materials bought by such an agent is

c, then the agent can sell the finished goods at a maximum price of 6c (because all the raw

materials were purchased at half the base price). The parameter representing the interest

rate during a game is chosen randomly with a maximum value of 20%. Given these values,

we can calculate the maximum cost efficiency of any agent:

∀a ∈ agents, cost efficiency(a) ≤ 6c + 6c× 20%

c + 0
=

7.2c

c
= 7.2. (4.16)

Additionally, if we know the interest rate parameter for a specific game, we can substi-

tute this value into the formula above to obtain the maximum cost efficiency of any agent

participating in that game.

Theorem 5 (Minimum Cost Efficiency). The minimum cost efficiency of any agent in

the TAC SCM game is 0.

4.6. AGENT DESIGN 57

Proof. Any agent which orders some supplies or incurs some penalty, but which does not

sell any finished products, will attain a cost efficiency of 0.

For various reasons, no practical agent will attain the theoretic maximum cost efficiency.

Successful agents will need to respond to RFQs throughout the majority of the game, not

just at the very beginning. The effect of interest will therefore be reduced. Also, depending

on the strategies of the other agents, an agent which only bids near the high end of the

reserve price range may never receive any customer offers. It is also unlikely that an agent

will be able to attain parts at 50% discount, since the discount is based on available capacity

and available capacity is expected to be low (see Section 4.2).

A metric similar to cost efficiency that is more commonly used in economics is profit

margin, which is defined as profit
total revenue

and is bounded above by 100%. We can calculate the

profit margin at the end of a TAC SCM game as:

profit margin =
final score

revenue + interest
. (4.17)

4.6 Agent Design

The principle of modular design is pervasive in the field of software engineering. In the actual

implementation of a TAC SCM agent, we need to identify appropriate modules that can be

developed and tested independently of each other. A TAC SCM agent is responsible for

making decisions in four main areas: procurement of raw materials from suppliers, sales of

finished goods to customers, production of finished goods from raw materials, and delivery

of finished goods to customers. These reponsibilities suggest a natural decomposition of

an agent into four high-level functional components: procurement, sales, production, and

delivery. The next four sections investigate the detailed responsibilities of each of these

components and suggest metrics that can be used to measure the performance of these

components.

58 CHAPTER 4. ANALYSIS

4.7 Procurement

The ideal procurement component would have the following characteristics:

1. It would maintain a level of supplies sufficient to meet customer demand and allow for

maximum factory utilization.

2. It would forecast future demand and place requests for supplies far in advance, thus

maximizing supplier discounts.

3. It would provide estimates of future product supply and prices to other components.

4. It would engage in strategic behavior, preventing other agents from obtaining their

needed supplies.

5. It would keep inventory levels as low as possible.

6. It would ensure that no unused components remained in raw materials inventory at

the end of the game.

These characteristics suggest strategies that can be pursued by procurement components

and metrics by which the performance of procurement components can be evaluated. These

strategies and metrics are discussed in the following sections.

4.7.1 Demand Fulfillment

Biswas and Narahari [5] define order fill rate as the fraction of customer orders that are

immediately met from existing stock. It is not clear that this will be a useful metric for the

TAC SCM game, since there is no incentive to ship orders immediately. However, it may

be useful to measure the fraction of customer orders that could be immediately met from

existing stock if there were such an incentive. An agent which does well with respect to

this metric would be able to fulfill orders with short lead times with a low probability of

4.7. PROCUREMENT 59

incurring penalties. Note that this metric is not entirely a measure of inventory management

performance, as it also involves the production component. The value of this metric is also

highly correlated with the behavior of the sales component, since the sales component is

responsible for controlling the level of customer orders.

A simpler metric is that of potential factory utilization: if the production component

has enough raw materials to produce finished PCs at maximum utilization, the procurement

component is clearly doing a good job of obtaining required components. Note that the

potential factory utilization can be 100% even if the factory is not actually producing at

100% utilization. With this measure, we can measure the demand fulfillment capabilities of

the procurement component independently of other components.

4.7.2 Demand Forecasting

The proposed demand fulfillment metrics measure the ability of the procurement component

to meet present demand. We are also interested in measuring the ability of the procure-

ment component to account for future demand. This is especially important since the TAC

SCM specification describes supply price discounts, which allow advance supply orders to

be discounted at a factor of up to 50%. The supplier price formula given in the TAC SCM

specification is as follows:

P (d + i) = base price×
(

1− δp× Cavailable(d + i)

Cnominal × i

)
, (4.18)

where P (d + i) is the price offered for a component with due date d + i on any day d, δp is

the price discount factor (specified as 50%), Cnominal is the nominal capacity of the supplier

(500 components per day), and Cavailable is the amount of currently free capacity the supplier

has between days d and d + i. Therefore, an agent which can accurately predict its supply

needs may be able to obtain a large proportion of its supplies at half of the base price. An

obvious measure of an agent’s demand forecasting capabilities is the percentage of the base

60 CHAPTER 4. ANALYSIS

price that the agent actually pays for supplies during the course of the game. Of course,

this metric can be misleading if the agent orders a large quantity of supplies that are never

used. Section 4.7.5 provides metrics which are useful for analyzing the costs due to excess

inventory.

4.7.3 Supply Availability and Price Estimation

Another important responsibility of the procurement component is the estimation of future

availability and prices of supplies. These estimates provide information that is useful for the

decisions made by the sales and production components.

Each agent is allowed to send up to ten RFQs to each supplier every day. Since an agent

will not generally need to use this many RFQs for supply acquisition, it can use the excess

RFQs as supplier queries. When the supplier makes offers on these query RFQs, the agent

has no intent to accept these offers. Rather, the agent can use these offers to determine the

availability of the supplier.

If the supplier expects its production capacity to be full between the current date and

the due date of the RFQ, it will respond with two offers: an earliest complete offer and

a partial offer. The agent can then examine the revised due date in the earliest complete

offer to determine when the supplier will next have available production capacity. Since this

supplier has little free capacity available, the procurement component can also estimate that

the prices offered by the supplier will be very close to the base price.

If the supplier responds with a single offer, the agent knows that the supplier currently

expects to have free production capacity. The agent can also update its supply-price esti-

mates to reflect the offer price provided in the offer. Furthermore, the agent can use this

price along with the supplier pricing formula (Equation 4.18) to deduce the supplier’s level

of expected production capacity.

The procurement component can also use the periodic reports of market state to estimate

the production levels of suppliers. Although market reports are only produced every twenty

4.7. PROCUREMENT 61

days, they provide one item of information that can not be ascertained through sending

supplier queries: the quantities of each component produced and sold by suppliers. (Supplier

queries can only be used to tell whether suppliers are busy, not which components the

suppliers have actually been producing.)

4.7.4 Strategic Procurement Behavior

There are significant incentives for procurement components to engage in strategic behavior.

Since availability of raw materials is likely to be the limiting factor in most TAC SCM games

(see Section 4.2), the agent which secures the largest proportion of the available supply should

have a marked advantage over its opponents. An agent can monopolize the supply for some

component by simply placing an extremely large order on the first day of the game. If the

agent is lucky (luck is required since suppliers consider incoming RFQs in a random order),

it will be able to monopolize the production capacity of the supplier for a large fraction of

the game. Any agent which can manage to monopolize the supply of some PC component is

guaranteed to be able to win all bids for RFQs that require that component, and can do so

while bidding at the customer’s reserve price. Furthermore, an agent which monopolizes an

entire class of components (e.g., all CPUs, all memory modules, etc.) can prevent all other

agents from being able to manufacture any PCs at all.

Given the significant incentives for strategic behavior in inventory management, successful

agents will most likely engage in such behavior. In addition, they will need to be able to

detect and respond to the strategic behaviors of other agents. One way to detect supplier

monopolization is through the supply availability estimation technique detailed in Section

4.7.3.

62 CHAPTER 4. ANALYSIS

4.7.5 Minimization of Inventory Costs

In the TAC SCM game, there is no extra cost associated with keeping large inventories

of raw materials or finished goods. However, to take advantage of the interest rate, an

agent should not hold items in inventory for a long period of time. Doing so prevents the

agent from obtaining interest on the revenue gained by selling the items, effectively causing

a depreciation in the value of these items. The procurement component should therefore

attempt to minimize the amount of time that raw materials are kept in inventory.

At the end of the game, any unused raw materials or finished goods represent a loss

because the agent could have achieved greater profit by not ordering these excess items.

(This is not strictly true if part of our motivation for ordering these items was to prevent

other agents from possessing them.) We can express this loss as the sum of two separate

quantities: excess rm loss, which denotes the sum of the order prices of all excess raw

materials, and excess fg loss, which denotes the sum of the order prices of the raw materials

used to manufacture all excess finished goods. The procurement component should attempt

to minimize the value of excess rm loss.

4.8 Sales

The ideal sales component would have the following characteristics:

1. It would secure customer orders to match existing inventory and projected future

inventory.

2. It would forecast the trend underlying daily RFQ quantities.

3. It would learn the mapping from offer prices to the probability that a customer will

accept the offer.

4. It would provide estimates of future PC demand and order prices to other components.

4.8. SALES 63

5. It would minimize losses due to late or missed deliveries.

6. It would engage in strategic behavior.

7. It would keep inventory levels as low as possible.

8. It would ensure that no unused PCs remained in finished goods inventory at the end

of the game.

These characteristics suggest strategies that can be pursued by sales components and

metrics by which the performance of sales components can be evaluated. These strategies

and metrics are discussed in the following sections.

4.8.1 Order Securement

The order securement component of an agent is responsible for deciding which customer

RFQs to bid on and at what prices. In this section we characterize the behavior of an ideal

order securement component.

Define the expected profit of a single offer x as the expected profit of the order o that

results if the customer accepts the offer, multiplied by the probability that x is accepted:

E[profit(x)] = E[profit(o)]× P (acceptance(x)). (4.19)

The expected profit of an order o is:

E[profit(o)] =offer price(o)× (1 + interest)
days−due date(o)

days

− supply costs(o)− E[late loss].

(4.20)

Equation 4.26, developed in Section 4.8.4, can be used to determine E[late loss], the expected

loss due to late delivery.

64 CHAPTER 4. ANALYSIS

The order securement responsibility of an ideal sales component can then be characterized

as follows. Given a set of RFQs R, 16-vectors Qmin and Qmax representing desired minimum

and maximum sales levels for each PC type, and a confidence level c ∈ [0 . . . 1], return a set

of offers O that satisfies the following constraints, or fail:

1. Consider the set C of customer orders that are received as a result of the offers O. Let

Qactual be a 16-vector representing the sum of the quantities ordered in C for each PC

type. For i = {1, . . . , 16}, assert that Qmini
≤ Qactuali ≤ Qmaxi

with confidence ≥ c.

2. O maximizes expected profit from customer orders. More formally, O is the minimal

set that maximizes the quantity
∑

x∈O E[profit(x)].

It is assumed that the values for Qmin, Qmax, and c are provided by some external source.

These values are probably chosen based on expected demand and order prices, expected

supply and supply costs, and the current status of raw materials inventory, finished goods

inventory, and the agent’s factory utilization. If the order securement module is unable to

find an O that satisfies the constraints, the external source may want to consider relaxing

the acceptable sales levels or desired confidence level.

Given the large number of RFQs per day and the fact that agents only have fifteen seconds

to make a day’s decisions, an optimal solution to the order securement problem is probably

computationally infeasible. Future work will investigate the development of heuristics that

approximate optimality and can be used to solve these constraints efficiently.

4.8.2 RFQ Trend Prediction

The number of RFQs per day is determined by a Poisson distribution over the average

number of customer RFQs (RFQavg):

RFQ = poisson(RFQavg). (4.21)

4.8. SALES 65

RFQavg is chosen at the beginning of the game from a uniform distribution over the

interval [80, 320], and is updated daily by a trend. This trend is initially zero and is updated

daily by a bounded random walk:

RFQavg = RFQavg × trend, (4.22)

trend = max(Tmin, min(Tmin, trend + random(−0.01, 0.01)), (4.23)

where Tmin = 0.95 and Tmax = 1/0.95. Given a sample of actual numbers of RFQs per day,

an agent may be able to determine the most probable values of RFQavg and trend. These

values could then be used to predict future demand.

4.8.3 Customer Order Probabilities

To attain an acceptable solution to the order securement problem, an agent must be able to

accurately estimate the probabilities that customers will accept offers. There are a variety

of factors that may influence this probability, including the offer price, the lead time of the

RFQ, the penalty specified in the RFQ, availability of supplies, and the strategies of other

agents.

The Effect of Order-to-Delivery Lead Time

In the TAC SCM game, customers’ RFQs specify due dates that are three to twelve days in

the future. This could be viewed as the customer’s order-to-delivery lead time preference.

It is reasonable to assume that, all else being the same, RFQs specifying lower lead times

will command higher prices. This is because agents that win bids with very short lead

times are essentially taking on a higher risk of incurring penalty charges. This effect will

therefore be especially pronounced when the penalty percentage is high. These agents are

also committing themselves to a schedule with more stringent constraints.

Conversely, if all else is the same, an RFQ with an early due date allows an agent to get

66 CHAPTER 4. ANALYSIS

paid earlier. Due to the effect of interest, this will translate into a higher profit. It is not

yet clear whether this effect will be significant.

Shipping finished goods early does not result in any benefit, so there is no incentive to

ship earlier than the day before the due date. There is actually an incentive to avoid shipping

early: the agent might be able to put in a successful bid on a high-priced, low-lead-time RFQ

and sell the (already completed) PCs to another customer at a premium. The agent could

then use remaining supplies and assembly capacity to fulfill the original customer’s order

within a reasonable time.

Since there is no incentive to ship finished goods early, order-to-delivery lead time is not

an interesting metric for evaluation of TAC SCM agents; the probability of on-time delivery

is of far greater importance. However, determining the relationship between lead time and

order price is essential for the evaluation of customer RFQs.

Machine Learning in Order Securement

There are a variety of factors that influence the probabilities of customer orders. These

factors are partially dependent on one another and not necessarily known to an agent’s

developers a priori. Given the importance of RFQ evaluation, it is very likely that successful

agents will use on-line machine learning to aid in this process.

In the simplest case, we can assume that the order probability of an offer o is based only

on the offer price and the values specified in the RFQ: quantity, lead time, reserve price,

and penalty. We can then create a 5-dimensional matrix Q = offer price × quantity ×

lead time × reserve price × penalty. Each entry in Q contains two values: the number of

offers the agent has made on RFQs with the associated parameter values and the number of

times that these offers have been accepted by customers. We can seed each slot in Q with

a small number of fake “offers” and a randomly-chosen number of acceptances, and update

the appropriate slots every time a bundle of offers is sent or a bundles of orders is received.

To calculate P (acceptance(o)), we look up the appropriate slot in Q and divide the number

4.8. SALES 67

of orders by the number of offers. We may want to keep Q small by partitioning the values

of offer prices, reserve prices, and penalties into ranges.

The biggest problem with this approach is that this method considers all offers equally.

Since the state of the market will change over the course of the game, it is likely that the

results of the most recent offers are much more relevant. To solve this, we could use a

reinforcement learning approach, such as Q-learning, that assigns rewards to an agent each

time an offer is accepted. This reward can also be correlated with the profit gained by the

order such that the agent is enticed to continue making offers on profitable categories of

RFQs.

The periodic market reports produced by the server may also be useful in learning the

order acceptance rate.

4.8.4 Late Deliveries

An acceptable solution to the order securement problem must also consider the losses asso-

ciated with late deliveries. This section develops results that can be used to determine the

expected loss due to late delivery of any customer order.

Customer Satisfaction

In the TAC scenario, customers’ satisfaction levels are actually fairly easy to quantify. This

is at least partially due to the fact that customers have no brand loyalty or preferred sup-

pliers since customers always choose the lowest bidder. We can consider a customer to be

completely satisfied if a complete order is received by the due date. If an order is late,

the customer is unsatisfied by a quantifiable amount: the daily late-delivery penalty. This

penalty is given in the original customer RFQ and ranges from 5% to 15% of the customer’s

reserve price (chosen from a uniform distribution). If an order is incomplete or more than

five days late, the customer is maximally unsatisfied and cancels the order without paying.

The penalties incurred over the last five days still apply. We can therefore write an equation

68 CHAPTER 4. ANALYSIS

that explicitly quantifies the customer’s satisfaction level. A reasonable measure of customer

satisfaction is the fraction of the agreed order price which the customer actually pays:

satisfaction =


1 if delivery is on time

price−penalty×n
price

if delivery is 1 ≤ n ≤ 5 days late

−5×penalty
price

if delivery is more than 5 days late

(4.24)

Note that the satisfaction of the customer can be negative if the delivery is more than

five days late or if the daily penalty is greater than 20% of the order price.

Losses Due to Late Delivery

If an agent delivers an order n days late, it will lose some money due to late delivery. Each

customer RFQ specifies a daily penalty p which is immediately subtracted from an agent’s

bank account if the order is not delivered on time. In addition, the agent needs to consider

the interest charged on these penalties over the last n− 1 days and the loss of interest that

could have accrued if the agent had delivered the order on time. We can therefore express

the loss late lossn due to being n days late as the sum of these three quantities, if n ≤ 5.

We will assume the loss for n > 5 is the same as the loss for n = 5. This is a simplification

since the order does not ever get delivered and the agent therefore essentially loses the order

price and all future interest on the order price. On the other hand, the components needed

for that order still exist in inventory, so the agent can use them to fulfill another order. The

true loss calculation in this case is therefore not straightforward; further work is needed to

theoretically or experimentally determine this loss.

late lossn =

 n× p +
(
intd × p×

∑n−1
i=1 i

)
+ intd × order price× n if 0 ≤ n ≤ 5

∼ late loss5 if n > 5,

(4.25)

where intd denotes the daily interest rate.

4.8. SALES 69

Probability of n-Day-Late Delivery

In the TAC SCM game, it makes sense to measure the probability P (laten) of n-day-late

delivery, where 0 ≤ n ≤ 5, and the probability P (late∞) of being more than 5 days late,

which is 1−
∑5

i=0 P (latei). P (late0) is the probability of on-time delivery. These quantities

are essential for accurate prediction of the expected loss due to late delivery. If we know (or

can accurately estimate) these probabilities, then we can use Equation 4.25 to calculate the

expected loss due to late delivery E[late loss] of any order:

E[late loss] =

(
5∑

i=1

P (latei)× late lossi

)
+ P (late∞)× late loss∞. (4.26)

This quantity can be used to more accurately estimate the expected profit of a bid. This

is another area where machine learning could be utilized: the probability of on-time delivery

likely depends on the lead time of the order, the amount of available (and projected) supplies,

and the quantity of PCs required by other outstanding orders.

4.8.5 Strategic Sales Behavior

There are also incentives for sales components to behave strategically. The RFQ bidding

process is a first-price, sealed-bid, correlated-value auction. As discussed in Section 3.5.1,

agents can achieve greater utility in these auctions by making strategic bids that depend on

the bidding habits of other agents. An ideal sales component would therefore model other

agents’ bidding behavior and make strategic bids.

4.8.6 Minimization of Inventory Costs

The sales component should also do its part to keep inventory levels low and to ensure that

the loss due to excess finished goods (excess fg loss) is minimized. See Section 4.7.5 for

further discussion of this topic.

70 CHAPTER 4. ANALYSIS

4.9 Production

The responsibility of the production component can be stated as follows: given a set R of raw

materials, produce a set F of finished goods with maximal expected utility. It is assumed

that some outside source determines the utility of producing PCs of each type.

If we assume that the utility utilityi of producing a single PC of type PCi does not

depend on the production of other PCs, we can state the production problem as an integer

linear programming problem.3

Let b be an 11-vector such that bi = quantity(componenti) for 1 ≤ i ≤ 10 and b11 =

assembly cycles available. Let c be a 16-vector such that ci = utilityi. Let A be an

11× 16 matrix such that Ai,j = the quantity of componenti needed to manufacture PCj for

1 ≤ i ≤ 10 and A11,j = the number of assembly cycles needed to manufacture PCj.

We then wish to find a 16-vector x that maximizes the sum
∑16

i=1 cixi subject to the 11

constraints given by Ax ≤ b. The values of x must be chosen from the set of non-negative

integers. This is a full formulation of an integer linear programming problem.

Given this formulation, we can use standard integer linear programming tools to find

an optimal value for x. Unfortunately, general integer linear programming problems are

NP-complete, so we are not guaranteed to be able to find a solution efficiently. However,

integer linear programming was used successfully by Stone et al. [54] to solve the TAC

Classic allocation problem. Also, the size of this problem has a constant bound, since A is

11×16. We therefore hope that this approach can be used in the TAC SCM game as well. If

not, a heuristic searching strategy, such as that used by Greenwald and Boyan [18] in their

implementation of RoxyBot, may achieve near-optimal performance in a computationally

efficient manner.

3A definition of this term is presented in Section 3.6.

4.10. DELIVERY 71

4.10 Delivery

The responsibility of the delivery component can be stated as follows: given a set F of

finished goods, produce a set D of deliveries with maximal expected utility. We can define

the utility utilityi of delivering the finished products required for order oi as:

utilityi =

 −ε if today + 1 < due date ≤ today − 5

late lossn(oi) if not delivering oi today would cause oi to be n days late.

(4.27)

As discussed in Section 4.8.3, there is no incentive for delivering early, and there is some

incentive to not deliver early, so utilityi = −ε if the order is not yet due. Also, utilityi = 0

if the order is already at least five days late, because the customer will cancel the order and

we will get no money even if we choose to deliver today.

Since each customer order only requires one type of PC, we can consider delivery for each

type of PC separately. We will choose to take this approach. The delivery component will

therefore solve sixteen delivery subproblems each day.

Let Ok be the set of outstanding customer orders that require PCs of type PCk, and let

n be the size of Ok. Let W be the quantity of PCk available in finished goods inventory.

Let vi be the utility of fulfilling the ith order in Ok and wi be the quantity specified by the

ith order in Ok. We want to choose some subset of Ok such that
∑

vi is maximized and∑
wi ≤ W . This is equivalent to the 0-1 knapsack problem [12], which can be solved with

a dynamic programming algorithm that runs in O(nW) time.

4.11 Miscellaneous Performance Metrics

Supply chain performance metrics suggested by Biswas and Narahari [5] were presented in

Section 3.1. Most of these metrics have already been included in our analysis. Two metrics

that have not yet been discussed are product quality and supply chain lead time.

72 CHAPTER 4. ANALYSIS

4.11.1 Product Quality

The TAC SCM scenario makes no distinction between product qualities. Since all goods

produced by all agents are of equivalent quality, product quality is not a useful metric for

evaluating agents.

4.11.2 Supply Chain Lead Time

In general, this is the time required for the supply chain to acquire raw materials, plus the

amount of time required to convert raw materials into finished goods, plus the amount of

time required to ship finished goods to the customer. Since the time required to ship finished

goods is a constant (one day) in the TAC SCM game, we are only interested in considering

the time required to attain and process raw materials.

Chapter 5

Implementation

This chapter discusses the current status of our implementation of a TAC SCM agent. To

date, much of our implementation has focused on low-level issues such as communication with

the TAC server and the development of a software framework for the TAC agent. The abilities

of the agent presented here are therefore rather limited, especially when compared to those

of the ideal agent explored in the previous chapter. Nevertheless, this agent performs all the

tasks required of a TAC SCM agent and does so in a reasonable manner. It therefore serves

as a useful benchmark which we can use to test the performance of more advanced agents.

Furthermore, our agent has been implemented in a modular, component-based manner, such

that more advanced modules can be developed and added to the agent easily.

5.1 Procurement

The current implementation of our agent could be characterized as supply-driven. By this

we mean that all aspects of the agent’s processing depends on the acquisition of supplies.

It is therefore not surprising that the performance of our agent depends heavily on the

performance of the procurement component. We have implemented a bounded inventory

manager component that attempts to keep the level of each type of raw materials within

73

74 CHAPTER 5. IMPLEMENTATION

MANAGE_INVENTORY(V: vector of current raw materials inventory levels,

Min: vector containing desired minimum inventory levels,

Max: vector containing desired maximum inventory levels):

for i <- 1 to length[V]

if V[i] < Min[i]

ORDER_COMPONENTS(V, i, Max[i] - V[i])

end

end

ORDER_COMPONENTS(V: vector of current raw materials inventory levels,

c: component ID,

n: quantity to order):

supplier <- pick random supplier for component i

for i <- 1 to 5

send RFQ to supplier requesting n / 5 units of c to be delivered tomorrow

end

V[c] <- V[c] + n

Figure 5.1: The algorithm used by the bounded inventory manager.

user-determined bounds. It does this using the simple algorithm presented in Figure 5.1.

This algorithm essentially implements a bang-bang control scheme.

For each RFQ it sends out, the bounded inventory manager always accepts a supplier

offer. If the desired quantity of supplies is not available by the due date, the bounded

inventory manager always accepts the earliest complete offer. Whenever extra supply for

some component is needed, the agent chooses a random supplier that produces that type of

component. It then sends five requests to this supplier, each specifying 1/5 of the desired

quantity. This is done in case the supplier isn’t able to deliver the full order on the due

date. If this is the case, the five requests might allow the agent to receive some fraction of

the order earlier than if it had just sent a single RFQ.

One desirable characteristic of the bounded inventory manager is that it allows us to

determine an a priori upper bound on the loss due to excess raw materials inventory at the

end of the game. (See Section 4.7.5 for further details.)

Theorem 6 (Maximum excess rm loss for an Agent with a Bounded Inventory

5.2. PRODUCTION 75

Manager).

excess rm loss ≤
10∑
i=1

base price(i)×Max[i].

Proof. In the worst case, an agent with a bounded inventory manager will have Max[i] units

available for every component i at the end of the game. The maximum price the agent can pay

for a unit of component i is base price(i). The worst-case total price for all the components

remaining in raw materials inventory is therefore
∑10

i=1 base price(i)×Max[i].

5.2 Production

The simple production manager creates a production schedule given available supplies. It

does this by iterating over the possible PC types and building a unit of each PC for which

the required raw materials are available. It repeats this process until its production capacity

is maximized or the raw materials inventory has been depleted to the point that it is no

longer possible to create another PC.

5.3 Sales

The simple sales manager uses the finished goods inventory to make offers on RFQs. For

each RFQ, it checks if the PCs necessary to fulfill the order are available in inventory. If so,

it places a bid for the RFQ at 90-100% of the RFQ’s reserve price. It then removes some

quantity of finished goods from consideration such that it does not overcommit available

inventory. This quantity is determined by multiplying the number of PCs requested in

the RFQ by the probability P that the customer will accept this offer. P is currently a

single scalar value hard-coded into the simple sales manager; a value of 0.5 is currently used.

Experimental results have shown that this quantity seems to provide a good tradeoff between

overcommitment and buildup of excess finished goods inventory.

76 CHAPTER 5. IMPLEMENTATION

5.4 Delivery

The simple delivery manager takes in a list of outstanding customer orders and produces

a delivery schedule. It does so by considering each order and checking whether there is

currently available finished goods to fulfill the order. If so, it adds the order to the delivery

schedule and decreases the quantity of finished goods inventory by the appropriate amount.

Chapter 6

Experimental Results

We have experimentally tested our current implementation of a TAC agent by running it on

the publicly-accessible TAC SCM server. This server is currently configured for 56-day-long

games, which is substantially shorter than the 200- to 250-day games suggested by the TAC

SCM specification. This allows for easier testing of agents since the play of an entire game

takes only 15 minutes. Our agent played a total of 260 games over a period of three days.

In each game, the agent played against five other agents. The strategy used by our agent is

that described in Chapter 5, with minimum and maximum inventory bounds of 750 and 1000

for each of the four types of CPUs and 1500 and 2000 for each other type of component. In

54 of these games, one or two of our agent’s opponents were agents developed by other TAC

SCM teams. The remaining opponents were all dummy agents. These dummy agents are

created automatically by the server when a game starts that has fewer than six participants.

The dummy agents perform all the tasks required of TAC SCM agents using a very simple

strategy. The results of these experiments are summarized in Figures 6.1, 6.2, 6.3, and

6.4. For the purposes of these experiments, our agent is named rudy, after one of our team

members. We intend to choose a different name at some point in the future.

These results show that even our simple agent is currently performing well with respect

to other teams’ agents. Our agent was first place in every game but one of the two games

77

78 CHAPTER 6. EXPERIMENTAL RESULTS

Agent Name Games Played Standing Final Score
rudy 260 1.004 44.1 million
utexas 2 1.500 15.1 million
Dummy-2 260 3.935 8.86 million
Dummy-4 259 3.965 8.47 million
Dummy-5 206 3.971 8.54 million
Dummy 260 3.973 8.91 million
temp 2 4.000 -1.03 million
Dummy-3 260 4.012 8.96 million
BlueLight 46 4.652 2.71 million
omalley 1 6.000 -48.6 million
viswanath 4 6.000 -64.0 million

Figure 6.1: Summary of game outcomes. The number of games played by each agent is
included in this table along with the agent’s mean final standing (where 1 denotes the winner)
and mean final score. In this figure and the others in this chapter, agents are presented in
order of their mean standing.

Agent Name Revenue Interest Supply Costs Penalties
rudy 60.3× 106 0.174× 106 36.4× 106 0.677× 106

utexas 45.7× 106 −0.0229× 106 28.4× 106 2.17× 106

Dummy-2 43.0× 106 0.0723× 106 21.7× 106 12.5× 106

Dummy-4 43.1× 106 0.0723× 106 21.9× 106 12.8× 106

Dummy-5 41.9× 106 0.0723× 106 21.4× 106 12.1× 106

Dummy 43.0× 106 0.0736× 106 21.6× 106 12.5× 106

temp 27.0× 106 0.0294× 106 15.0× 106 13.0× 106

Dummy-3 43.2× 106 0.0750× 106 21.8× 106 12.5× 106

BlueLight 25.8× 106 0.00759× 106 15.3× 106 7.80× 106

omalley 36.5× 106 −0.231× 106 38.5× 106 46.3× 106

viswanath 0.0× 106 −0.393× 106 16.5× 106 47.1× 106

Figure 6.2: Summary of Income and Expenses. Each agent’s mean revenue, interest, supply
costs, and penalties are presented in this table.

79

Agent Name Orders On-Time Late Missed % On-Time
rudy 2110 2105 0.86 4.2 99.8%
utexas 1013 859 125 29 89.2%
Dummy-2 1243 540 462 242 51.6%
Dummy-4 1260 548 455 256 52.5%
Dummy-5 1216 538 440 238 53.3%
Dummy 1248 544 457 247 52.1%
temp 866 193 403 270 11.1%
Dummy-3 1252 544 465 243 52.1%
BlueLight 860 543 62 255 47.5%
omalley 2459 604 274 1581 24.6%
viswanath 1795 0 0 1795 0.0%

Figure 6.3: Summary of delivery statistics. Each agent’s mean number of orders, on-time
deliveries, late deliveries, missed deliveries, and percentage of on-time deliveries are presented
in this table.

Agent Name Factory Utilization Cost Efficiency Profit Margin
rudy 89.4% 2.21 54.7%
utexas 52.5% 1.47 32.0%
Dummy-2 51.3% 1.55 25.8%
Dummy-4 51.3% 1.56 25.4%
Dummy-5 50.0% 1.59 26.6%
Dummy 51.2% 1.57 25.8%
temp 31.5% 0.48 -1.3%
Dummy-3 51.5% 1.57 26.2%
BlueLight 31.2% 0.94 -134.3%
omalley 50.0% 0.43 -132.5%
viswanath 1.8% 0.0 0.0%

Figure 6.4: Summary of performance metrics. Each agent’s factory utilization, mean cost
efficiency, and profit margin are presented in this table.

80 CHAPTER 6. EXPERIMENTAL RESULTS

against utexas. In this game, our agent placed second. The results strongly suggest that

only our agent and utexas are currently more sophisticated than the dummy agents.

The results highlight one of the main advantages of our supply-driven approach: our

agent is consistently able to meet deadlines. Even though our agent obtained roughly twice

as many orders as other agents, its on-time delivery percentage of 99.8% was substantially

higher than that of any other agent. The penalties incurred by our agent are an order of

magnitude lower than the penalties incurred by other agents.

Our average factory utilization of 89.4% indicates that the main bottleneck in our agent’s

performance was often the production capacity of its factory. In a typical game, our agent

would receive its first batch of supplies on the fifth day of the game, and was able to produce

PCs at nearly 100% utilization for the remainder of the game. Since the expected bottleneck

of the TAC SCM game is the amount of available supplies (see Section 4.2), this result seems

to indicate that other agents are under-utilizing suppliers’ production capacities.

Of the 260 games played, the two most interesting are those in which we competed with

utexas, since utexas seems to be the only agent with a level of sophistication roughly equal

to our own. In the first of these two, utexas was the winner, with a final score of $8,095,390.

Our agent came in second, with a score of $815,358. The four dummy agents performed

especially poorly; their scores ranged from -$6,110,901 to -$10,314,096. utexas obtained 599

customer orders; we obtained 581 orders. The dummy agents also obtained approximately

600 orders each. These figures are substantially less than the averages presented in Figure

6.3. This seems to indicate that this was a game in which customer RFQs were the main

bottleneck. We believe that the reason for our loss in this game was overproduction. Our

factory utilization was 81%, while utexas was able to fulfill practically the same number

of orders with a factory utilization of only 32%. Our agent therefore built up excess fin-

ished goods that were never sold to customers. Our supply costs were approximately $5.5

million more than those of utexas. This figure accounts for the majority of the difference

between our scores. This game demonstrated one of the primary weaknesses of our current

81

implementation: our agent will continue to produce PCs and order supplies even when it is

unable to sell its current finished goods inventory at an appropriate rate. When a customer

RFQ bottleneck occurs, a better strategy for our agent would be to slow down the rate of

production or respond to customer RFQs with a lower offer price. One possible way to slow

the rate of production is through the use of a Kanban system. However, the static bidding

strategy of our agent does not currently handle this contingency.

In the second game against utexas there was no customer RFQ bottleneck. Our agent

was therefore able to produce at 87% capacity and fulfill 2095 orders to utexas’ 1426. This

allowed us to achieve nearly $15 million more revenue than utexas. However, utexas was

also assessed over $4 million in penalties. Since our supply costs were roughly identical to

those of utexas, these two factors led to our victory by a margin of approximately $20

million.

We can calculate the maximum score of a single agent in a 56-day game by using The-

orem 2. This value is approximately $129.4 million. The mean final score of our agent is

$44.1 million; this is approximately 34.1% of the theoretical maximum. Since our agent is

competing in the presence of other agents, we consider this to be a very high percentage.

It would be interesting to test the performance of our agent when it is the only player in a

game; such a test has not yet been performed.

The mean cost efficiency of our agent in these trials was 2.21, which is also somewhat

high, since our agent is making no attempt to obtain supplies at discounted prices. Since

it buys nearly all of its supplies at full price, the maximum cost efficiency our agent can

possibly obtain is approximately 3.6.

The results of our experimental work seem to indicate that our current implementation

is relatively advanced compared to those of most other teams. However, our loss to utexas

has demonstrated that our agent’s strategy is not robust. Several months remain until the

TAC SCM finals, so we must continue to improve our agent by devising and implementing

more sophisticated strategies.

82 CHAPTER 6. EXPERIMENTAL RESULTS

Chapter 7

Conclusions and Future Work

The primary contribution of this thesis is its extensive analysis of the TAC SCM game. We

presented a concise description of this game in Chapter 2. Results from a variety of fields

are applicable to this domain; we presented a broad survey of work related to the TAC

SCM competition in Chapter 3. We presented a detailed analysis of the TAC SCM game in

Chapter 4, including proofs of theoretical results, metrics by which the performance of agents

can be measured, and suggestions of strategies that may be of use in the implementation

of sophisticated agents. We described the preliminary implementation of a simple supply-

driven agent in Chapter 5. Experimental results presented in Chapter 6 seem to indicate that

this implementation is currently more sophisticated than those of most other teams. These

experiments also illustrated one particular condition in which our agent behaves particularly

poorly. We presented a brief comparison of our simple agent’s performance to the theoretical

results presented in Chapter 4.

Our agent is far from complete. We still need to implement the more sophisticated strate-

gies suggested by the results of Chapter 4 and to experimentally determine the effectiveness

of these strategies. In addition, the problems faced by the procurement and sales components

have not been fully analyzed. For instance, we are currently unsure how to represent the

loss due to being more than five days late in delivery. Although we have enumerated some

83

84 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

capabilities that an ideal TAC SCM agent would have, we do not know for certain which

of these capabilities are feasible. It seems that machine learning, statistical inference, and

search algorithms may be especially useful in the development of the procurement and sales

components. Additional theoretical work is needed to determine which of these capabilities

are worth further exploration. Experimental work will then be needed to determine the

performance of newly-developed strategies.

We intend to perform a post hoc analysis of the TAC SCM game after the competition

is completed. We can then compare our results to those of other teams and attempt to

determine what strategies led to exceptional results.

A potential area for long-term future work is the development of a real-world SCM system

based on the principles derived during our analysis and implementation of the TAC SCM

agent.

Appendix A

Source Code for the Supplier

Capacity Simulation

The source code for the supplier capacity simulation used in Section 4.4 is presented here.

This simulation was written in the Java programming language.

public class SupplierCapacitySimulation {

public static void main(String[] args) {

/* SIMULATION PARAMETERS */

// Number of trials to run

int trials = 1000000;

// Maximum number of PCs that could have been produced in each

// trial - this is the output of a trial

long[] maxPCs = new long[trials];

/* TAC SCM PARAMETERS */

// Number of days in a TAC SCM game

int days = 250;

// Nominal supplier capacity

85

86 APPENDIX A. SOURCE CODE FOR THE SUPPLIER CAPACITY SIMULATION

int cNominal = 500;

// Total capacity of each of the 8 suppliers

long[] cTotal = new long[8];

// Current capacity of each of the 8 suppliers

int[] cCurrent = new int[8];

System.out.println("Commencing " + trials + " trials...");

for (int i = 0; i < trials; i++) {

// Initialize total capacity to 0 and current capacity to nominal

// capacity

for (int j = 0; j < 8; j++) {

cTotal[j] = 0;

cCurrent[j] = cNominal;

}

// Simulate the days

for (int j = 0; j < days; j++) {

// Update each supplier’s current capacity, then add the new

// current capacity to the supplier’s total capacity.

for (int k = 0; k < 8; k++) {

double randomValue = Math.random() * 0.1 - 0.05;

cCurrent[k] = (int)

Math.max(0,

cCurrent[k] +

randomValue * cNominal +

0.01 * (cNominal - cCurrent[k]));

87

cTotal[k] += cCurrent[k];

}

}

// Determine the total number of CPUs, motherboards, memory

// modules, and hard disks produced in this trial

long cpus = cTotal[0] + cTotal[1];

long motherboards = cTotal[2] + cTotal[3];

long memory = cTotal[4] + cTotal[5];

long disks = cTotal[6] + cTotal[7];

// The maximum number of PCs that could be produced is

// min(cpus, motherboards, memory, disks).

maxPCs[i] = Math.min(Math.min(cpus, motherboards),

Math.min(memory, disks));

}

// Find the results. We are interested in the highest, lowest, and

// mean values of maxPCs.

long highestValue = 0;

long lowestValue = Long.MAX_VALUE;

long totalPCsProduced = 0;

for (int i = 0; i < trials; i++) {

totalPCsProduced += maxPCs[i];

if (maxPCs[i] > highestValue) {

highestValue = maxPCs[i];

}

88 APPENDIX A. SOURCE CODE FOR THE SUPPLIER CAPACITY SIMULATION

if (maxPCs[i] < lowestValue) {

lowestValue = maxPCs[i];

}

}

double meanValue = totalPCsProduced / trials;

// Now find the standard deviation.

double variance = 0.0;

for (int i = 0; i < trials; i++) {

variance += Math.abs(maxPCs[i] - meanValue);

}

// Print it out!

System.out.println("Minimum PC production was: " + lowestValue);

System.out.println("Maximum PC production was: " + highestValue);

System.out.println("Mean PC production was: " + meanValue);

System.out.println("Standard deviation was: " + Math.sqrt(variance));

}

}

Bibliography

[1] M. Aarup, M. M. Arentoft, Y. Parrod, J. Stader, and I. Stokes. OPTIMUM-AIV: A

knowledge-based planning and scheduling system for spacecraft aiv. In M. Fox and

M. Zweben, editors, Knowledge Based Scheduling. Morgan Kaufmann, 1994.

[2] R. Arunachalam, J. Eriksson, N. Finne, S. Janson, and N. Sadeh. The TAC supply

chain management game (Draft version 0.6), March 2003.

[3] B. W. Ballard. The *-minimax search procedure for trees containing chance nodes.

Artificial Intelligence, 21(3):327–350, 1983.

[4] C. Bell and A. Tate. Using temporal constraints to restrict search in a planner. In

Proceedings of the Third Alvey IKBS SIG Workshop, 1985.

[5] S. Biswas and Y. Narahari. Object oriented modeling for decision support in supply

chain networks. In Proceedings of POMS-99, International Conference on Operations

Management for Global Economy, December 1999.

[6] A. L. Brudno. Bounds and valuations for shortening the scanning of variations. Problems

of Cybernetics, 10:225–241, 1963.

[7] S. J. Buckley and J. E. Smith. Supply chain simulation. Technical report, Georgia Tech

Logistics Short Course, June 1997.

[8] D. Carmel and S. Markovitch. Learning models of opponent’s strategy in game playing.

Technical report, Technion-Israel Institute of Technology, 1993.

89

90 BIBLIOGRAPHY

[9] J. Collins, W. Ketter, and M. Gini. A multiagent negotiation testbed for contracting

tasks with temporal and precedence constraints. International Journal of Electronic

Commerce, 7(1):35–57, 2002.

[10] J. E. Collins. Solving Combinatorial Auctions with Temporal Constraints in Economic

Agents. PhD thesis, University of Minnesota, June 2002.

[11] M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman

distances. In Computational Learing Theory, pages 158–169, 2000.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, 1990.

[13] K. Erol, J. Hendler, and D. S. Nau. HTN planning: complexity and expressivity. In

Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94).

AAAI Press, 1994.

[14] M. Ettl and M. Schwehm. Determining the optimal network partition and kanban

allocation in JIT production lines. In J. Biethahn and V. Nissen, editors, Evolutionary

Algorithms in Management Application, pages 139–152. Springer-Verlag, 1995.

[15] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of theorem

proving to problem-solving. Artificial Intelligence, 2(3-4):189–208, 1971.

[16] J. J. Fuchs, A. Gasquet, B. Olalainty, and K. W. Currie. PlanERS-1: an expert planning

system for generating spacecraft mission plans. In First International Conference on

Expert Planning Systems. Institute of Electrical Engineers, 1990.

[17] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1995.

[18] A. Greenwald and J. Boyan. Bid determination in simultaneous auctions: A case study.

In Proceedings of the Third ACM Conference on Electronic Commerce, 2001.

BIBLIOGRAPHY 91

[19] M. He and N. R. Jennings. SouthamptonTAC: designing a successful trading agent. In

Proceedings of the Fifteenth European Conference on Artificial Intelligence, 2002.

[20] M. He and N. R. Jennings. SouthamptonTAC: an adaptive autonomous trading agent.

ACM Transactions on Internet Technology, To appear, 2003.

[21] M. N. Huhns and L. M. Stephens. Multiagent systems and societies of agents. In

G. Weiss, editor, Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, chapter 2. MIT Press, 1999.

[22] i2 Technologies. http://www.i2.com, 2003.

[23] S. Jain, C.-C. Lim, B.-P. Gan, and Y.-H. Low. Criticality of detailed modeling in

semiconductor supply chain simulation. In Proceedings of the 1999 Winter Simulation

Conference, 1999.

[24] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup: The robot

world cup initiative. In W. L. Johnson and B. Hayes-Roth, editors, Proceedings of the

First International Conference on Autonomous Agents (Agents’97), pages 340–347, New

York, 1997. ACM Press.

[25] H. Kitano, S. Tadokor, H. Noda, I. Matsubara, T. Takhasi, A. Shinjou, and S. Shimada.

Robocup-rescue: Search and rescue for large scale disasters as a domain for multi-agent

research. In Proceedings of the IEEE Conference on Systems, Men, and Cybernetics,

1999.

[26] D. M. Kreps. A Course in Microeconomic Theory. Princeton University Press, 1990.

[27] H. L. Lee and C. Billington. Managing supply chain inventory: pitfalls and opportuni-

ties. Sloan Management Review, 33(3):65–73, 1992.

[28] H. J. Levesque, P. R. Cohen, and J. Nunes. On acting together. In Proceedings of the

National Conference on Artificial Intelligence. AAAI Press, 1990.

92 BIBLIOGRAPHY

[29] R. Levinson. General game-playing and reinforcement learning. Computational Intelli-

gence, 12(1):155–176, 1996.

[30] S. Mahadevan, N. Marchalleck, T. Das, and A. Gosavi. Self-improving factory sim-

ulation using continuous-time average reward reinforcement learning. In Proceedings

of the Fourteenth International Machine Learning Conference, pages 202–210. Morgan

Kaufmann, 1997.

[31] S. Mahadevan and G. Theocharous. Optimizing production manufacturing using re-

inforcement learning. In Proceedings of the FLAIRS Conference 1998, pages 372–377,

1998.

[32] R. A. McCain. Strategy and conflict: An introductory sketch of game theory (course

material), 1997.

[33] D. McFadden. Rationality for economists. Journal of Risk and Uncertainty, 19:73–105,

1999.

[34] D. Michie. Game-playing and game-learning automata. In L. Fox, editor, Advances in

Programming and Non-Numerical Computation, pages 183–200. Pergamon, 1966.

[35] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[36] J. Nash. Equilibrium points in n-person games. In Proceedings of the National Academy

of Sciences, volume 36, pages 48–49, 1950.

[37] J. V. Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Prince-

ton University Press, 1944.

[38] V. Pareto. Manual of Political Economy. Augustus M. Kelley, 1906.

[39] B. D. Pell. Strategy Generation and Evaluation for Meta-Game Playing. PhD thesis,

University of Cambridge, August 1993.

BIBLIOGRAPHY 93

[40] M. Pollack and J. F. Horty. There’s more to life than making plans. AI Magazine,

20(4):71–84, 1999.

[41] A. Postlewaite. Implementation via Nash equilibria in economic environments. In

L. Hurwicz, D. Schmeidler, and H. Sonnenschein, editors, Social Goals and Social Or-

ganization: Essays in Memory of Elisha Pazner, chapter 7, pages 205–228. Cambridge

University Press, 1985.

[42] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,

1995.

[43] T. Sandholm. Distributed rational decision making. In G. Weiss, editor, Multiagent

Systems: A Modern Approach to Distributed Artificial Intelligence, chapter 5. MIT

Press, 1999.

[44] SAP AG. Adaptive supply chain networks. White paper, 2002.

[45] SAP AG. mySAP supply chain management. White paper, 2003.

[46] SAP AG. SAP advanced planner and optimizer. http://www.sap.com, 2003.

[47] R. Schapire, P. Stone, D. McAllester, M. Littman, and J. Csirik. Modeling auction price

uncertainty using boosting-based conditional density estimation. In Proceedings of the

Nineteenth International Conference on Machine Learning, 2002.

[48] C. Shannon. Programming a computer for playing chess. Philosophical Magazine,

41(4):256–275, 1950.

[49] S. Shingo. A Study of the Toyota Production System from an Industrial Engineering

Viewpoint. Productivity Press, 1989.

[50] M. Spearman, D. Woodruff, and W. Hopp. CONWIP: An alternative to kanban. In-

ternational Journal of Production Research, 28(5):879–894, 1990.

94 BIBLIOGRAPHY

[51] P. Stone. Layered Learning in Multi-Agent Systems. PhD thesis, Carnegie Mellon

University, 1998.

[52] P. Stone. Multiagent competitions and research: Lessons from RoboCup and TAC. In

The RoboCup 2002 International Symposium, 2002.

[53] P. Stone and A. Greenwald. The first international trading agent competition: au-

tonomous bidding agents. Electronic Commerce Research, 2002.

[54] P. Stone, M. L. Littman, S. Singh, and M. Kearns. ATTac-2000: an adaptive au-

tonomous bidding agent. In J. P. Müller, E. Andre, S. Sen, and C. Frasson, editors,

Proceedings of the Fifth International Conference on Autonomous Agents, pages 238–

245, Montreal, Canada, 2001. ACM Press.

[55] P. Stone and M. Veloso. A layered approach to learning client behaviors in the RoboCup

soccer server. Applied Artificial Intelligence, 12, 1998.

[56] Swedish Institute of Computer Science AB. TAC Classic game description.

http://www.sics.se/tac/page.php?id=3, 2003.

[57] The tac-dev Mailing List. tac-dev@sics.se.

[58] M. Tambe. Implementing agent teams in dynamic multi-agent environments. Applied

Artificial Intelligence, 12, 1998.

[59] S. Tayur, R. Ganeshan, and M. Magazine, editors. Quantitative Models for Supply

Chain Management. Kluwer Academic Publishers, 1999.

[60] A. Tversky. On the elicitation of preferences: Descriptive and prescriptive considera-

tions. In B. Bell, R. Kenney, and H. Raiffa, editors, Conflicting Objectives in Decisions.

Wiley, 1977.

BIBLIOGRAPHY 95

[61] M. M. Veloso, M. E. Pollack, and M. T. Cox. Rationale-based monitoring for planning

in dynamic environments. In Artificial Intelligence Planning Systems, pages 171–180,

1998.

[62] J. M. Vidal and E. H. Durfee. Learning nested agent models in an information economy.

JETAI, 10(3):291–308, 1998.

[63] W. E. Walsh. Market Protocols for Decentralized Supply Chain Formation. PhD thesis,

University of Michigan, 2001.

[64] D. Zeng and K. Sycara. Bayesian learning in negotiation. International Journal of

Human Computer Systems, 48:125–141, 1998.

