
Thresholded Rewards: Acting Optimally in Timed, Zero-Sum Games

Colin McMillen and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

{mcmillen,veloso}@cs.cmu.edu

Abstract

In timed, zero-sum games, the goal is to maximize the prob-
ability of winning, which is not necessarily the same as max-
imizing our expected reward. We consider cumulative inter-
mediate reward to be the difference between our score and
our opponent’s score; the “true” reward of a win, loss, or
tie is determined at the end of a game by applying a thresh-
old function to the cumulative intermediate reward. We in-
troduce thresholded-rewards problems to capture this depen-
dency of the final reward outcome on the cumulative interme-
diate reward. Thresholded-rewards problems reflect different
real-world stochastic planning domains, especially zero-sum
games, in which time and score need to be considered. We
investigate the application of thresholded rewards to finite-
horizon Markov Decision Processes (MDPs). In general, the
optimal policy for a thresholded-rewards MDP will be non-
stationary, depending on the number of time steps remain-
ing and the cumulative intermediate reward. We introduce
an efficient value iteration algorithm that solves thresholded-
rewards MDPs exactly, but with running time quadratic on
the number of states in the MDP and the length of the time
horizon. We investigate a number of heuristic-based tech-
niques that efficiently find approximate solutions for MDPs
with large state spaces or long time horizons.

Introduction
Markov Decision Processes (MDPs) are a powerful tool for
planning in the presence of uncertainty. MDPs provide a
theoretically sound means of achieving optimal rewards in
uncertain domains. The standard MDP problem is to find
a policy π : S → A that maps states to actions such that
the cumulative long-term reward is maximized according to
some objective function. Over an infinite time horizon, the
objective function is typically a sum of discounted rewards
or the average reward rate as t→∞ (Kaelbling, Littman, &
Moore 1996; Mahadevan 1996). Over a finite time horizon,
a discount factor is not needed, and the objective function is
typically the sum of the rewards achieved at each time step.

Our work is motivated by zero-sum games with score and
limited time; in particular, robot soccer. In timed, zero-sum
games, winning against the opponent is more important than
the final score. Therefore, a team that is losing near the

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

end of the game should play aggressively to try to even the
score even if an aggressive strategy allows the opponent to
score more easily. McMillen and Veloso discuss how a team
of soccer-playing robots can change plays (high-level team
strategies) based on factors such as the time remaining in a
game and the score difference (McMillen & Veloso 2006;
Stone 1998). However, this strategy selection was hand-
tuned, using simple rules such as, “If our team is losing and
there is less than one minute remaining, play aggressively”.

In this paper, we consider an alternative objective func-
tion for finite-horizon MDPs. Rather than maximizing the
cumulative reward over h time steps, we apply a threshold
function f to the final cumulative reward and seek to max-
imize the value of f . We call this the thresholded rewards
objective function. This objective function allows us to de-
rive optimal strategy selections for timed, zero-sum games,
such as robot soccer, in which the goal is to win: to be ahead
of the opponent after some number of time steps. The op-
timal policy for such a domain is one that maximizes the
probability of being ahead at the end of the game. Such a
policy will generally be nonstationary: the optimal action
from a given state depends on the number of timesteps re-
maining and the current score difference. In this paper, we
present an exact algorithm for finding optimal policies for
thresholded-rewards MDPs. However, the running time of
this algorithm has a quadratic dependence on the number of
states in the MDP and the length of the time horizon. For
MDPs with large state spaces or long time horizons, the ex-
act algorithm may be intractable. We therefore investigate a
variety of approximate solution techniques.

Thresholded-Rewards MDPs
We use the standard (S, A, T,R, s0) notation for represent-
ing MDPs; for simplicity, we assume that rewards are found
in the states of the MDP (rather than in state/action pairs).
The optimal policy π of an MDP can be found exactly using
a technique known as value iteration, which uses the Bell-
man equation (Puterman 1994):

V n+1(s) = max
a∈A

{
R(s) + γ

∑
s′∈S

T (s, a, s′)V n(s′)
}

,

where V 0(s) = R(s) and γ ∈ (0, 1] is a discount factor.
For an infinite-horizon problem, V k converges to some V ∗

as k →∞ (for γ < 1). The optimal policy π∗ for an infinite-
horizon MDP is stationary (does not depend on time). For
a finite-horizon problem with k timesteps remaining, V k al-
lows us to find the optimal next action from any state. This
optimal action may depend on the number of time steps re-
maining; such a policy is said to be nonstationary. MDPs
can also be solved with policy iteration. In this paper, we
primarily focus on value iteration techniques; however, the
algorithms presented in this paper can be trivially general-
ized to policy iteration techniques.

Definitions
Let a thresholded-rewards MDP (TRMDP) be a tuple
(M,f, h), where M is an MDP (S, A, T,R, s0), f is a
threshold function, and h is an integer (the time horizon).
Informally, M runs for h time steps while our agent col-
lects cumulative intermediate rewards rintermediate; at the
end, the agent receives a true reward rtrue according to
f(rintermediate). A policy π for a TRMDP is nonstation-
ary: it takes in a state s ∈ S, the time remaining, and the
intermediate reward achieved so far. Formally, the dynam-
ics of a TRMDP are as follows:

Algorithm 1 Dynamics of a thresholded-rewards MDP.
s← s0

rintermediate ← 0
for t← h to 1 do

a← π(s, t, rintermediate)
s← s′ ∼ T (s, a)
rintermediate ← rintermediate + R(s)

rtrue ← f(rintermediate)

Our main focus in this paper is timed, zero-sum games.
In these domains, we consider the intermediate reward to be
the difference between our agent’s score and our opponent’s
score. We define the zero-sum reward threshold function as:

rtrue =

1 if rintermediate > 0
0 if rintermediate = 0
−1 if rintermediate < 0.

This function assigns true reward of 1 for a win, −1 for a
loss, and 0 for a tie. In a thresholded-rewards problem, we
wish to find the optimal policy π∗ that maximizes the ex-
pected value of rtrue. It is important to note that, in general,
1) π∗ will be nonstationary and 2) π∗ is not the policy that
maximizes expected intermediate reward. Though we focus
on the zero-sum reward threshold function in this paper, our
results generalize to arbitrary threshold functions.

Example
In a TRMDP, the optimal policy will generally be nonsta-
tionary. To illustrate this, we present an example—inspired
by robot soccer—that will be used throughout the remainder
of this paper. We simplify the robot soccer domain signif-
icantly by modeling it as an MDP M with three states, as
shown in Figure 1:
1. FOR: our team scores a goal (reward +1)

For (+1)

Against (-1)

None (0)

a T (∗, a,FOR) T (∗, a,AGAINST) T (∗, a,NONE)
balanced 0.05 0.05 0.9
offensive 0.25 0.5 0.25
defensive 0.01 0.02 0.97

Figure 1: Example MDP M , inspired by robot soccer.

2. AGAINST: the opponents score a goal (reward −1)
3. NONE: no score occurs (reward 0)

Our agent is a team of robots, and each action choice cor-
responds to a strategy (play) the team can adopt. In this
example, we consider three different plays: balanced, offen-
sive, and defensive. We treat the opponent team as static,
using the transition probabilities to model the opponent as
part of the environment. The transition probabilities of these
actions are shown in Figure 1. When the balanced play is
chosen, our agent has a 5% chance of scoring and the op-
ponent has a 5% chance of scoring. The offensive play is
risky: it increases our team’s chance of scoring but gives the
opponent an even greater chance of scoring. Inversely, the
defensive play is conservative. For simplicity, these transi-
tion probabilities do not depend on the current state.

The expected one-step reward of action a from state s is
equal to

∑
s′ R(s′)×T (s, a, s′). Using this, we can compute

the expected one-step reward of each action:
• balanced: 0 = 0.05× 1 + 0.05×−1 + 0.9× 0
• offensive: −0.25 = 0.25× 1 + 0.5×−1 + 0.25× 0
• defensive: −0.01 = 0.01× 1 + 0.02×−1 + 0.97× 0
In the standard reward-maximization problem, the optimal
policy for M is to execute the balanced action at every time
step. The balanced play has the highest expected one-step
reward, and (for this MDP) also has the optimal expected
long-term reward for any choice of γ in the range [0, 1].

However, our team’s goal is not to maximize expected re-
wards, but to maximize the probability that we finish the
game with a higher score than the opponent. We view this
as a thresholded-rewards problem: we apply the zero-sum
threshold function to our agent’s cumulative intermediate
reward and maximize the expected value of this threshold
function. With thresholded rewards, the policy of always
choosing balanced has an expected true reward of 0, with
the probability of winning being equal to the probability of
losing. The exact probability of each result depends on the
time horizon h and can be determined by the multinomial
probability distribution. For h = 120, the probability of
winning is 44.2%, the probability of losing is 44.2%, and
the probability of tying is 11.6%.

However, this policy is suboptimal for the thresholded-
rewards problem, as it is possible to achieve a positive true
reward in this domain. Later in this paper, we show how
to derive the optimal policy for this domain, which has an
expected true reward of 0.1457 (for h = 120). Qualitatively,

the optimal policy is nonstationary, choosing the offensive
action if our agent is losing near the end of the game and
choosing the defensive action if our agent is winning near the
end of the game. By doing so, the optimal policy increases
the chance of getting a “win” or “tie” result, at the expense of
maximizing the expected value of the intermediate rewards.

Related Work
Sutton and Barto present a blackjack domain which is simi-
lar to a thresholded-rewards problem (Sutton & Barto 1998).
In the blackjack domain, each hand proceeds until the end of
the game, at which time the agent receives a score of −1, 0,
or +1 based on the current state. Each game is of a finite
(though not fixed) length. However, there is no notion of
time in this domain—the optimal policy is completely de-
termined by the current state and is stationary with respect
to the amount of time that has passed.

Bacchus et al. discuss the concept of non-Markovian re-
wards (NMRDPs) as a way to assign rewards to behaviors
that extend over time (Bacchus, Boutilier, & Grove 1996).
NMRDPs are a generalization of MDPs in which the reward
function R takes in histories, of the form 〈s1, s2, . . . sn〉.
Thresholded rewards are closely related to NMRDPs, as
the thresholded-rewards objective function is also a form of
non-Markovian reward. However, with thresholded rewards,
we are not interested in accumulating rewards based on the
past history of the system. Instead, we are interested in
choosing actions based on the expected reward accumulated
at some fixed point in the future. Bacchus et al. present an
algorithm for converting an NMRDP into a standard MDP
by “expanding” the MDP: annotating each state with the ad-
ditional history information needed to ascribe the rewards.
Unfortunately, this transformed MDP can be exponentially
larger than the base MDP. We use a similar technique to
solve TRMDPs; however, the size of our transformed MDP
is only polynomially larger than the original MDP. In this
paper, we present a value iteration algorithm that exploits
the structure of our transformed MDP to efficiently find the
optimal policy.

Thresholded-Rewards MDP Conversion
In order to solve a TRMDP (M,f, h), we create a new
MDP M ′ such that finding the policy that maximizes reward
in M ′ is equivalent to finding the policy that maximizes
f(rintermediate) in M .1 In the next section, we present an
algorithm that solves the converted MDP M ′ efficiently.

Algorithm 2 shows our TRMDP conversion algorithm.
Each state s′ in the converted MDP M ′ is a tuple (s, t, ir),
where s is a base state from M , t is the number of time steps
remaining, and ir is the cumulative intermediate reward re-
ceived by the agent within the first h − t time steps. By
design, the optimal action for a state s′ = (s, t, ir) in M ′ is
the optimal action for being in some state s in M with t time
steps remaining and cumulative intermediate reward of ir.

1Throughout the remainder of this paper, we will use s′,
T ′(s′, a, s′

2), and R′(s′) to refer to the states, transitions, and re-
wards of the converted MDP M ′. We will use s, T (s, a, s2), and
R(s) to refer to the base MDP M .

Algorithm 2 Converts a TRMDP (M,f, h) into an MDP M ′

suitable for finding the optimal thresholded-rewards policy.
1: Given: MDP M = (S, A, T,R, s0), threshold function

f , time horizon h

2: s′0 ← (s0, h, 0)
3: S′ ← {s′0}
4: for i← h to 1 do
5: for all states s′1 = (s1, t, ir) ∈ S′ such that t = i do
6: for all transitions T (s1, a, s2) in M do
7: s′2 ← (s2, t− 1, ir + R(s2))
8: S′ ← S′ ∪ {s′2}
9: T ′(s′1, a, s′2) = T (s1, a, s2)

10: for all states s′ = (s, t, ir) in M ′ do
11: if t = 0 then
12: R′(s′)← f(ir)
13: else
14: R′(s′)← 0
15: return M ′ = (S′, A, T ′, R′, s′0)

Solving M ′ allows us to extract the optimal non-stationary
policy for the TRMDP (M,f, h).

We now explain Algorithm 2 in detail. On line 2 of the
conversion algorithm, the initial state s′0 of M ′ is set to
(s0, h, 0), indicating that the agent starts in state s0, with
h time steps remaining, and no cumulative intermediate re-
ward. S′ is the set of states in the converted MDP; S′ ini-
tially contains only the starting state s′0.

The first loop (lines 4–9) generates all the remaining states
in S′ and the new transition function T ′. This loop iterates
from h steps remaining down to 1; at iteration i it generates
all states that have i− 1 time steps remaining, by finding all
the states in S′ with i time steps remaining (line 5) and gen-
erating all possible successors of these states. For each such
state s′1 = (s1, t, ir), the algorithm finds all transitions in M
from s1 to some other state s2 on action a (line 6). A new
state s′2 is created for each such s2. Each s′2 has base state
s2, i− 1 time steps remaining, and cumulative intermediate
reward ir + R(s2) (line 7). s′2 is added to S′ if it doesn’t al-
ready exist (line 8). The transition probability T ′(s′1, a, s′2)
is equal to the transition probability T (s1, a, s2) of the base
MDP M (line 9).

The second loop (lines 10–14) assigns rewards to each
state in S′. Each final state is assigned reward based on
applying the threshold function f to the cumulative inter-
mediate reward ir (line 12). Non-final states are assigned
reward 0 (line 14). The algorithm has now defined S′, T ′,
R′, and s′0; the action space A is left unchanged. The con-
verted MDP M ′ is then (S′, A, T ′, R′, s′0) (line 15). Figure
2 shows the result of applying the conversion algorithm to
the example MDP M (with h = 3).

Exact Solutions
The optimal policy for a TRMDP (M,f, h) is the solution
to M ′, which is generated by Algorithm 2 and can be solved
using any MDP solution technique. The following facts
about M ′ allow for an efficient value iteration algorithm:

None,3,0

Against,2,-1

 0.05

For,2,1

 0.05

None,2,0

 0.90

For,0,3None,0,-1None,0,-2 For,0,0 For,0,1 Against,0,0For,0,-1

For,1,0

 0.05

None,1,-1

 0.90

Against,1,-2

 0.05

For,0,2Against,0,-1Against,0,-2Against,0,-3

Against,1,0

 0.05

For,1,2

 0.05

None,1,1

 0.90

 0.05 0.05

None,0,0

 0.90

Against,0,1

 0.05 0.05

None,0,2

 0.90

For,1,1

 0.05 0.05

None,0,1

 0.90 0.05 0.05 0.90 0.05 0.05 0.90

None,1,0

 0.05 0.05 0.90

 0.05 0.90

Against,1,-1

 0.05

 0.90 0.05 0.05 0.90 0.05 0.05 0.90 0.05 0.05

Figure 2: The MDP M ′ returned by Algorithm 2 given the MDP M and h = 3. Lightly-shaded states have reward 1; darkly-
shaded states have reward -1; unshaded states have reward 0. Transition probabilities for the balanced action are shown.

Fact 1 M ′ has a layered, feed-forward structure: every
layer contains transitions only into the next layer.

All MDPs generated by the conversion algorithm will have
this structure due to the fact that t must decrease by 1 at
every time step. (Figure 2 shows this fact visually.)

Fact 2 At iteration k of value iteration, the only values that
change are those for the states s′ = (s, t, ir) such that
t = k.

By design, non-zero rewards are found only in the bottom
layer of the MDP; with each iteration of value iteration,
these rewards propagate up to all the states in the next-higher
layer. The value iteration algorithm completes after comput-
ing V h; that is, when all the rewards have percolated up to
the initial state.

These facts allow for an efficient implementation of value
iteration on M ′: we start at the t = 0 layer and apply Bell-
man backups until the rewards “bubble up” to the top. At
iteration k, we only need to calculate the value of the states
in layer k of M ′ (that is, the states where t = k). Also,
we do not need to sum over all states in S′ when comput-
ing each value but only its O(|S|) potential successors in
the next lower layer (those states where t = k − 1.) Since
each state is backed up only once, the running time of value
iteration is proportional to |S′|, the number of states in M ′.

The states of M ′ are arranged into h + 1 layers. At most,
each layer k will have one state for every combination of
s and ir that is possible to achieve after h − k steps. At
the top level, there is only one possible intermediate reward
value. If we assume that intermediate rewards are drawn
from a set N of small integers (which is typically the case
for timed, zero-sum games), then the number of possible
intermediate-reward values at each subsequent layer grows
by (at most) the magnitude m of the largest element in N .
The number of states in layer k is therefore upper bounded
by |S| × (h − k)×m, and the total number of states in the
h + 1 layers of M ′ is O(|S|h2m). Each Bellman update
requires a maximization over |A| actions of a sum of ≤ |S|
possible successor states. Since each state is updated exactly
once, the worst-case running time of value iteration on M ′

is O(|A||S|2h2m).
Figure 3 shows the optimal policy for the example MDP

M (Figure 1) with time horizon h = 120. The y-axis shows
the number of time steps remaining; the x-axis shows the cu-
mulative intermediate reward (score difference). The shaded

Figure 3: The optimal policy for M (shown in Figure 1),
with time horizon h = 120 steps.

areas show the optimal action for every possible combina-
tion of time remaining and intermediate reward. (Since M ’s
transition probabilities are the same from every state, the
policy does not depend on the current state.) This policy has
an expected reward of 0.1457. By following this policy, our
agent will win approximately 50% of the time, lose 35% of
the time, and tie 15% of the time.

Figure 3 shows that the optimal policy for M is nonsta-
tionary: the policy depends on the number of time steps
remaining and the cumulative intermediate reward. Quali-
tatively, the optimal policy is to choose the defensive play
when winning by a significant number of points and to
choose the offensive play when losing by a significant num-
ber of points. When the score is close to a tie, the best play is
balanced. As the time remaining decreases, the point differ-
ence needed to choose offensive or defensive decreases—the
agent acts more urgently. The balanced regions in the lower-
left and lower-right of the figure are states from which the
actions of the agent no longer have any effect on the out-
come, because the number of steps remaining is greater than
the score difference. In these regions, all actions have equal
expected reward and the agent chooses balanced by default.

In Figure 4, we show the effect of changing the oppo-
nent’s capabilities. Specifically, we vary the probability
T (∗, balanced, AGAINST) of our opponent scoring when
we choose the balanced action. The y-axis shows the
expected true reward of following the optimal maximize-
expected-rewards policy (MER) and of following the opti-

Figure 4: Effect of changing the opponent’s capabilities.

mal thresholded-rewards policy (TR). In all cases, TR per-
forms better than MER. It is interesting to note that the dif-
ference between the two objective functions is greatest when
the capabilities of each team are similar—that is, where T (∗,
balanced, AGAINST) is close to 0.5.

We also consider the performance of MER and TR on
5000 randomly generated MDPs. Each of these MDPs
has the same structure as M (shown in Figure 1), but the
transition probabilities of each state/action pair are cho-
sen as follows: T (s, a, AGAINST) is chosen uniformly
from [0.0, 0.5); T (s, a, FOR) is chosen uniformly from
[0.9, 1.0) × T (s, a, AGAINST); and T (s, a, NONE) is set
such that the three probabilities sum to 1. Note that our team
is less likely to score than the opponents at every timestep,
no matter which action is chosen. Therefore, the expected
true reward of MER is negative for every MDP. Figure 5 is a
histogram depicting the distribution of true rewards for MER
and TR on these 5000 MDPs. Each bar shows the number
of MDPs that have optimal policies within a given range of
true rewards. The mean true reward for MER is −0.0659;
the mean true reward for TR is 0.1971. These results show
that explicitly reasoning about score and time remaining al-
lows our team to win with high probability, even against an
opponent that is otherwise superior.

Figure 5: Performance of maximize-expected-rewards and
thresholded-rewards on 5000 randomly generated MDPs.

Heuristic Techniques
The efficient value iteration algorithm presented above
finds optimal solutions to thresholded-rewards MDPs in

O(|A||S|2h2m) time. The quadratic dependence on the
state space size and time horizon length will be an issue
for problems in which the base MDP has a large number
of states or in which the time horizon is long. Several gen-
eral techniques have been proposed to find approximate so-
lutions to large MDPs efficiently, including state aggrega-
tion (Li, Walsh, & Littman 2006), factored MDPs (Guestrin
et al. 2003; Hoey et al. 1999), and sparse sampling (Kearns,
Mansour, & Ng 2002). In this section, we present three dif-
ferent heuristic techniques, specific to TRMDPs, that allow
us to arrive at an approximate solution. Each of these heuris-
tics can be seen as an informed version of state aggregation
in which states are aggregated based on the time remaining.

The uniform-k heuristic. With this heuristic, our agent
adopts a non-stationary policy but only considers changing
its policy every k time steps. The net effect of this change is
to “compress” the time horizon uniformly by a factor of k.
This change directly leads to a decrease in the state space of
the expanded MDP M ′, allowing for a more efficient solu-
tion. However, this solution is suboptimal because the agent
does not consider switching policies at every time step.

The lazy-k heuristic. With this heuristic, our agent ig-
nores the reward threshold until there are k steps remaining.
For the first h−k time steps, the agent is completely ignorant
of the reward threshold, acting in accordance with the sta-
tionary, optimal policy for the base MDP M . Once there are
k steps remaining, the agent creates a thresholded-rewards
MDP M ′ with a time horizon k and an initial state chosen
to reflect the actual current state of the system (including
the cumulative intermediate reward). The agent solves M ′

and uses the optimal policy to adopt a nonstationary policy
for the remaining k time steps. The main idea of this tech-
nique is to concentrate computational effort near the end of
the run, when the agent’s actions may have a greater effect
on the overall outcome.

The logarithmic-k-m heuristic. With this heuristic, the
agent makes a number of decisions that is logarithmic in
the time horizon. The lazy-k heuristic saves computation by
only considering the end of the time horizon; the uniform-k
heuristic saves computation by compressing the entire time
horizon. The logarithmic heuristic is a hybrid approach in
which the time resolution becomes finer as we approach the
time horizon. For instance, we might allow the agent to
switch policies at every step during the final 10 steps of the
run, every two steps for the next 20 steps of the run, every
four steps for the next 40 steps of the run, and so on. The log-
arithmic heuristic depends on two parameters: k, the num-
ber of decisions the agent makes before the time resolution
is increased, and m, the multiple by which the resolution is
increased. For the example given above, k = 10 because
the agent needs to take 10 actions before each increase, and
m = 2 because the time resolution doubles on each increase.

We tested the performance of these heuristic techniques,
for a variety of parameter settings, on 60 different MDPs.
These MDPs were chosen randomly from the 5000 MDPs
that were used in the previous section. Figure 6 summa-
rizes the results. Each point on the graph corresponds to a
heuristic technique with some parameter setting. The x-axis
shows the number of states in the expanded MDP (averaged

Figure 6: Performance of heuristic techniques on 60 ran-
domly generated MDPs.

over the 60 MDPs); the y-axis shows the mean expected true
reward of that heuristic technique. Ideally, we would like a
technique that provides a high true reward with a low num-
ber of states. Points in the upper-left frontier of the graph
represent Pareto-efficient tradeoffs between state space size
and expected true reward.

The optimal algorithm, labeled “Optimal” in the figure,
has a mean reward of 0.1699 and requires 43,200 states to
compute. For small values of k, the uniform heuristic closely
approximates the optimal solution while significantly reduc-
ing the size of the state space. Uniform-2, labeled “B”, has
mean reward 0.1608 and requires 21,420 states. The se-
lection of k is a tradeoff between solution time and qual-
ity; uniform-15 (labeled “C”) uses only 2,544 states, but the
reward drops to 0.0957. Lazy-80 (labeled “D”) has mean
reward 0.1612 and uses only 19,200 states; this is fewer
states than uniform-2 and a higher mean reward. In general,
the lazy heuristic consistently has a higher reward than uni-
form at a given state space size. Logarithmic-8-2, labeled
“E”, closely matches the performance of lazy-k; however,
logarithmic-2-4 (labeled “F”) performs much worse than
both lazy and uniform. In general, the performance of loga-
rithmic seems highly parameter-dependent, and in no case
does logarithmic significantly outperform lazy at a given
state space size. Of the heuristics considered in this section,
lazy consistently offers the best tradeoff in terms of solu-
tion time and quality, which indicates that acting optimally
is most important near the end of the time horizon.

Conclusion
In this paper, we introduced thresholded-rewards problems,
in which an agent gains intermediate rewards during exe-
cution in a finite-horizon environment. At the end of the
horizon, the agent receives a true reward, which is deter-
mined by applying a threshold function to the intermediate
rewards. Thresholded rewards are particularly applicable to
timed, zero-sum games, such as robot soccer. In these do-
mains, thresholded rewards allow us to maximize the proba-
bility of winning.

We have presented an algorithm that converts a base MDP
into an expanded MDP suitable for solving thresholded-
rewards problems. Solving this expanded MDP yields

the optimal, nonstationary policy for the original MDP. In
this paper, we focus on an efficient value iteration algo-
rithm which finds solutions to thresholded-rewards MDPs
in O(|A||S|2h2m) time. We also investigated three heuris-
tic techniques that can be used to find approximately optimal
policies for thresholded-rewards MDPs. The lazy-k heuris-
tic, which concentrates computational effort on the end of
the time horizon, consistently has the highest performance
at a given state space size. We have showed experimentally
that the thresholded-rewards objective function allows our
team to win with high probability, even against a wide vari-
ety of otherwise superior opponents.

As presented in this paper, thresholded-rewards MDPs as-
sume that the opponent is static and can be treated as part of
the environment. If the opponent is unknown, or changes
its strategy during the course of the game, we cannot model
the opponent as a static part of the environment. Our future
work aims to address these challenges.

Acknowledgements
This work was supported by United States Department of the
Interior under Grant No. NBCH-1040007. The views and
conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies
or endorsements of any sponsoring institution.

References
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding
behaviors. In Proc. AAAI-96.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs.
JAIR.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of Uncertainty in Artificial Intelligence.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. JAIR.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 2002. A
sparse sampling algorithm for near-optimal planning in
large Markov decision processes. Machine Learning.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for MDPs. In Symposium
on Artificial Intelligence and Mathematics.
Mahadevan, S. 1996. Average reward reinforcement learn-
ing: Foundations, algorithms, and empirical results. Ma-
chine Learning 22(1-3):159–195.
McMillen, C., and Veloso, M. 2006. Distributed, play-
based role assignment for robot teams in dynamic environ-
ments. In Proc. Distributed Autonomous Robotic Systems.
Puterman, R. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley.
Stone, P. 1998. Layered Learning in Multi-Agent Systems.
Ph.D. Dissertation, Carnegie Mellon University.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing. MIT Press.

