
Distributed, Play-Based Role Assignment for
Robot Teams in Dynamic Environments

Colin McMillen and Manuela Veloso

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, U.S.A.
{mcmillen,veloso}@cs.cmu.edu

Summary. The design of a coordination strategy for a distributed robotic team is
challenging in domains with high uncertainty and dynamic environments. We present
a distributed, play-based role assignment algorithm that has been implemented on
real robots in the RoboCup four-legged league. The algorithm allows the robots to
adapt their strategy based on the current state of the environment, the game, and
the behavior of opponents. The distributed play-based approach also enables the
robots to reason about task-based temporal constraints and has been designed to
be resistant to the problem of role oscillation.

1 Introduction

A common goal of distributed autonomous robotic systems is the develop-
ment of teamwork and coordination strategies. The benefits of adding mul-
tiple robots to a system, such as increased performance and reliability, have
been demonstrated in many different situations. However, depending on the
domain and the task, different sorts of approaches might be needed. We are
interested in the implementation of multi-robot coordination in domains with
high uncertainty and dynamic environments.

In this paper, we present our approach to role assignment in the RoboCup
four-legged league [2], in which two teams of four Sony AIBO robots compete
in a robot soccer game. Figure 1 shows a snapshot of a recent AIBO game.
This domain presents many challenges, including: full robot autonomy, dis-
tributed robot team control, limited individual robot perception, the presence
of robot adversaries, task-dependent temporal constraints, and high commu-
nication latency. In this paper, we contribute a new distributed play-based
system that equips the robots with plays – alternative teamwork strategies.
This method was developed to overcome limitations of previous approaches.
In particular, it assigns roles to robots in a fault-tolerant manner that min-
imizes role switching and synchronization problems. Our approach has been
fully implemented within robot soccer, but is designed to be relevant to gen-



2 Colin McMillen and Manuela Veloso

eral multi-robot domains that share some of the challenging features of robot
soccer, as identified in this paper.

Fig. 1. A RoboCup four-legged league soccer match.

We discuss the RoboCup legged league in section 2, identifying the tech-
nical features that we address as especially challenging for multi-robot coor-
dination. Section 3 introduces our approach to teamwork. Section 4 presents
experimental results that highlight some of the advantages of our approach.
We present our conclusions in section 5. Related work is discussed throughout
the paper as needed.

2 Challenges of the RoboCup Legged League

In the RoboCup four-legged league, two teams of four Sony AIBO robots play
each other in a time-limited and space-limited setting (currently two game
halves of ten minutes each and a field of 6m×4m). The settings and the rules
of the game change every year to create new research challenges. The current
complete rules of the domain are available at [2]. We focus on the discussion
of the general features of the game that are of relevance to team coordination.
These features include:

1. Full autonomy: each team of robots operates completely without human
supervision. However, teams are allowed to change the robots’ program-
ming at halftime or during a timeout. Each team is granted one timeout
per game.

2. Distributed teams: all perception, computation, and action is done on-
board the robots. The robots are equipped with 802.11b wireless net-
working, which enables communication among team members; however,
the robots are not allowed to communicate with any off-board computers.



Distributed, Play-Based Role Assignment 3

3. Limited perception: each robot’s primary sensor is a low-resolution
camera with a very narrow field of view (under 60 degrees). A single
robot therefore has a very limited view of the world, so teams can benefit
greatly from communication strategies that build a shared world model.

4. Dynamic, adversarial environment: the presence of adversaries in the
environment is a significant challenge. Opponents ensure that the environ-
ment is extremely dynamic: within a few seconds, the state of the world
may change significantly.

5. Temporal constraints: there are two temporal constraints that arise
due to the presence of adversaries. First, all team decisions must occur in
real time. A team that takes too long to coordinate will have robots that
display hesitation in carrying out their tasks, which gives the opponents
a significant advantage. Second, soccer is a finite-horizon zero-sum game.
A game of soccer has a winning team, a losing team, and a defined end-
ing point. Playing a conservative strategy – which might work well over
a long period of time – is of no use to a team that is losing and only
has a few seconds remaining in the game. A team in this situation must
choose a strategy that can score a goal quickly, even if such a strategy has
other weaknesses. Multiple team coordination strategies are needed. The
selection algorithm faces complex multi-objective optimization criteria.

6. High network latency: the presence of dozens of robots in the com-
petition environment leads to very unpredictable quality of the robots’
wireless network. Teams may experience periods of high network latency
and collisions; latencies of over a second have been observed. To achieve
consistent performance, a team needs to ensure that the coordination
strategies employed are robust to disruptions in communication.

The issues of limited perception in the four-legged league have already
been addressed in previous work. Our specific implementation of a shared
world model [7] is not discussed at length here, but it is important to note that
some of the decisions made by individual robots on our team are influenced
by information that has been communicated by teammates.

In this paper, we focus on the challenges of role assignment (also known
as task allocation) in the RoboCup legged league. Due to the constraints of
our domain, it is a requirement that the solution be implemented on fully
autonomous, distributed robots. The work presented in this paper specifically
addresses the issues of adversarial environments, temporal constraints, and
robustness under high network latency.

Gerkey and Mataric [4] discuss role assignment in RoboCup, giving an
overview of the strategies used by teams in each of the RoboCup leagues. In the
four-legged league, the predominant approach involves allocating three roles:
an attacker, a defender, and some sort of supporter. According to Gerkey’s
survey, nearly all RoboCup teams assign roles to robots in a greedy fashion.
For example, in previous years, our own team (CMPack) assigned the roles in
a fixed order using a well-defined objective function, namely first the attacker



4 Colin McMillen and Manuela Veloso

role to the robot that could reach the ball most quickly, then the defender role
to whichever of the other two robots was closest to our own goal, and finally
the supporter role to the remaining robot [8]. To prevent robots from inter-
fering with one another, the attacker was the only robot allowed to actually
approach the ball for a kick; the other robots would position themselves in
useful supporting locations. If the ball came near to another robot, the team
members would negotiate a role switch. After the role switch, the closest robot
to the ball would become the new attacker, and the attack would continue.
This was a very effective strategy that contributed strongly to our world cham-
pionship in 2002. However, this strategy has some limitations, particularly in
terms of role switching and oscillation. Two robots that are equally suited to
the attacker role might fight over it. The potential outcome is an undesirable
role oscillation between the robots – a period of hesitation where neither robot
makes significant progress toward completing the task. A standard solution
to this problem, which has previously been implemented in our own team and
other RoboCup teams, is to add some hysteresis to the role assignment: ei-
ther allowing role assignments to occur infrequently (e.g., every few seconds)
or ensuring that a role switch will not occur unless one robot is significantly
more suited to the task than another. However, adding hysteresis to a system
can be difficult: if too much hysteresis is added, the robots will miss out on op-
portunities because they are no longer reacting as quickly to changes in their
dynamic environment. In practice, finding a solution that balances these two
constraints (lack of role oscillation and immediate response to environmental
changes) can be difficult. This problem is exacerbated under the presence of
communication failures or high network latency, where the negotiation of a
role switch may take several seconds to complete. Another limitation of this
design is that there can be a significant cost to role switching, as the robots
reconfigure themselves for their new roles. The work presented in this paper
attempts to minimize the effect of these limitations.

Dylla et al. [3] propose a soccer strategy language that formalizes the
strategies and tactics used by human soccer teams. Their goal is to be able to
specify soccer strategies in an abstract way that does not depend strongly on
the specific robot hardware used in the competition. However, to our knowl-
edge, the authors do not yet plan to use this language in the implementation
of any real robot soccer team. In this paper, we present a strategy language
that could be used in any multi-robot system and that has been implemented
in the four-legged league of the 2005 RoboCup competition.

3 Distributed Play-Based Role Assignment

We can say that teamwork in general consists of a team control policy, i.e., a
selection of a joint action by teammates given a perceived state of the environ-
ment [6]. It is our experience that it is rather challenging to generate or learn
a team control policy in complex, highly dynamic (in particular adversarial),



Distributed, Play-Based Role Assignment 5

multi-robot domains. Therefore, instead of approaching teamwork in terms of
a mapping between state and joint actions, we follow a play-based approach,
as introduced by Bowling et al. [1]. We introduce a distributed play-based
approach to teamwork, which allows us to handle the domain challenges in-
troduced in section 2. A play specifies a plan for the team; i.e., under some
applicability conditions, a play provides a sequence of steps for the team to
execute. Multiple plays can capture different teamwork strategies, as explicit
responses to different types of opponents. Bowling showed that play selection
weights could be adapted to match an opponent. Plays also allow the team to
reason about the zero-sum, finite-horizon aspects of a game-playing domain:
the team can change plays as a function of the score and time left in the
game. Our play-based teamwork approach ensures that robots do not suffer
from hesitation nor oscillation, and that team performance is not significantly
degraded by possible periods of high network latency. We believe that ours is
the first implemented distributed play-based teamwork approach, at least in
the context of the RoboCup four-legged league.

3.1 Plays

A play is a team plan that provides a set of roles, which are assigned to
the robots upon initiation of the play. Bowling [1] introduced a play-based
method for team coordination in the RoboCup small-size league. However, the
small-size league has centralized control of the robots. One of the significant
contributions of our work is the development of a play system that works in a
distributed team. The play language described by Bowling assumes that the
number of robots is fixed, and therefore always provides exactly four different
roles for the robots. In another extension to Bowling’s work, our plays also
specify which roles are to be used if the team loses some number of robots
due to penalties or crashes. This extension to the role-assignment aspects
of Bowling’s play language allows the team to robustly adapt to the loss
of team members without the need for additional communication. This is a
particularly important extension for domains where limited or high-latency
communication is the norm.

Our play language itself is also strongly inspired by the work of Bowling.
Our language allows us to define applicability conditions, which denote when
a play is suitable for execution; what roles should be assigned when we have
a specific number of active robots on the team; and a weight, which is used to
decide which play to run when multiple plays are applicable.

Applicability. An applicability condition denotes when a play is suitable for
execution. Each applicability condition is a conjunction of binary predi-
cates. A play may specify multiple applicability conditions; in this case,
the play is considered executable if any of the separate applicability con-
ditions are satisfied.



6 Colin McMillen and Manuela Veloso

Roles. Each play specifies which roles should be assigned to a team with a
variable number of robots by defining different ROLES directives. A direc-
tive applies when a team has k active robots, and specifies the correspond-
ing k roles to be assigned. If a robot team has n members, each play has
a maximum of n ROLES directives. Since our AIBO teams are composed
of four robots, our plays have four ROLES directives.

Weight. Weight is used to decide which play to run when multiple plays are
applicable. In our current implementation, the play selector always chooses
the applicable play with greatest weight. Future work could include choos-
ing plays probabilistically based on the weight values or updating the
weights at execution time to automatically improve team performance.
Playbook adaptation of this sort has been implemented by Bowling for the
small-size league [1]. In the work presented in this paper, adaptation was
not used – the weights were set manually.

Unlike the work of Bowling, we do not have DONE or TIMEOUT keywords that
specify when a play is complete. Rather, a play is considered to be complete as
soon as the play selector chooses a different play, which may happen because
the current play is no longer applicable or because another play with greater
weight has recently become applicable. Each predicate used in an applicability
condition is designed with some hysteresis, such that it is not possible for the
predicate to rapidly oscillate between true and false. The predicates used in
our approach depend on features of the environment – such as the time left
in game, the number of goals scored by each team, and the number of robots
available to each team – that by their nature cannot rapidly oscillate. This
ensures that the play choice also cannot rapidly oscillate.

Figure 2 shows an example of a defensive play. Its applicability conditions
specify that this play is applicable 1) when our team has fewer active players
than the opponents or 2) when the game is in the second half and our team is
winning by at least two points. If we have only one active robot on our team,
we will assign it the Goalkeeper role; if we have two robots, one is assigned
the Goalkeeper role and the other is assigned the Defender role; and so on.

PLAY StrongDefense

APPLICABLE fewerPlayers

APPLICABLE secondHalf winningBy2OrMoreGoals

ROLES 1 Goalkeeper

ROLES 2 Goalkeeper Defender

ROLES 3 Goalkeeper Defender Independent

ROLES 4 Goalkeeper Defender Midfielder Independent

WEIGHT 3

Fig. 2. An example play with multiple applicability conditions.



Distributed, Play-Based Role Assignment 7

3.2 Play Selector

The play selector runs continuously, on one robot that is arbitrarily chosen
to be the leader. The play selector chooses which play the team should be
running. The leader periodically broadcasts the current play (and role as-
signments) to its teammates. Distributed play-based coordination is achieved
through a predefined agreement among the team members to resort to a de-
fault play if a robot doesn’t hear a play broadcast within a communication
time limit. A failure of the leader or a network problem may trigger this de-
fault coordination plan. The algorithm used by the play selector is presented
in Figure 3.

SELECT_PLAY(S: world state, P: playbook, D: default play):

BEST_PLAY <- D

BEST_WEIGHT <- WEIGHT(D)

for each PLAY in P:

if WEIGHT(PLAY) > BEST_WEIGHT:

for each CONDITIONS in APPLICABLE(PLAY):

if all CONDITIONS are satisfied in STATE:

BEST_PLAY <- PLAY

BEST_WEIGHT <- WEIGHT(PLAY)

return BEST_PLAY

Fig. 3. Algorithm used by the play selector.

3.3 Roles

The role assigned to each robot determines what behaviors the robot actually
runs. Our approach, used in RoboCup 2005, is unique in that it is region-
based : each robot is assigned to a region of the field. A robot is primarily
responsible for going after the ball whenever the ball is in that robot’s region.
When the ball is not in its region, the robot will position itself at a good posi-
tion within its region (defined by a role-dependent objective function). Unlike
previous approaches, robots no longer need to negotiate with one another in
order to gain the attacker role that allows them to approach the ball. In this
way, the performance of the team does not degrade significantly under high
network latency. To ensure that one or more robots are always chasing after
the ball, these regions typically overlap significantly. We have developed algo-
rithms that prevent the robots from interfering with one another even when
they are playing in overlapping regions. To provide robustness against com-
munication failure, these algorithms are designed to operate without the need
for communication, using local information such as a robot’s vision of its own
teammates. However, if communication is available, we can use additional fea-
tures (such as reported teammate positions and ball positions) that provide
additional confidence that our robots will not interfere with one another.



8 Colin McMillen and Manuela Veloso

3.4 Role Allocation

The selection of a play determines which roles need to be allocated to the
robots. However, it does not specify which robots should be assigned to each
role. Therefore, a role allocation algorithm is still needed to assign the roles.
This algorithm also runs on the leader robot, which broadcasts the assignment
along with the selected play. Our role allocator has two features that differ-
entiate it from those used by most other RoboCup legged-league teams [4].
First, it only runs when a play is initially selected, as opposed to continu-
ously. Second, it allocates roles in a role-preserving manner – minimizing role
switching. Formally, if a new play Pt is selected at time t, and Pt specifies n
roles {R1..n} for the n robots r1..n, and ri was already assigned to Rj in Pt−1,
ri is guaranteed to still be assigned to Rj in Pt. (Any remaining roles can be
allocated in a greedy fashion.) The region-based nature of our plays enables
this feature, as ri is already guaranteed to be in the region for Rj since it was
already in that role’s region in the previous play. Therefore, it can assume
the new role without any transitional cost. These features provide additional
resistance to oscillation in cases in which two plays share common roles.

4 Experimental Results

We have previously presented empirical results that support the feasibility
and effectiveness of multiple plays in the RoboCup four-legged league [5]. In
this paper, we contribute a role allocation strategy, claiming that it addresses
hesitation due to role oscillation by preserving a robot’s role when possible.
We show experimental evidence that supports this particular claim.

In each experimental trial, three robots work together in a robot soccer
task, namely ball advancement – moving the ball towards the opposing goal
as quickly as possible. Figure 4 shows the initial position of the robots, from
which the team advances the ball down the field towards the goal. A trial is
considered complete when either a goal is scored, the ball advances past the
opponents’ back line, or the ball hits one of the goal posts. The time of each
completed trial is measured.

We test the robots’ teamwork in three different team play configura-
tions: (i) a single Defender-Striker-Independent play; (ii) a single Defender-
Midfielder-Independent play; and (iii) switching every five seconds between
the two plays in (i) and (ii). Since these two plays share two roles (defender
and independent), we expect that, even with frequent play switching, our role
assignment algorithm will not adversely affect the performance of the team.

Each configuration was tested for 40 completed trials, for a total of 120
experiments. Figure 5 summarizes the results. The fastest and slowest times
achieved in any trial were 17.18 and 70.15 seconds, respectively. The Defender-
Striker-Independent play performs best at this task, completing each trial
in a mean time of 31.06 seconds. The Defender-Midfielder-Independent play



Distributed, Play-Based Role Assignment 9

Fig. 4. Initial position for each experimental trial. The three robots are placed
in three positions on the field, with the ball in the defense area. The experiment
proceeds until the robots advance the ball past the end line of the opposite half of
the field.

performs more slowly, completing each trial in a mean time of 35.05 seconds.
The difference between these times is significant (determined by Student’s two-
tailed t-test, with p = 0.048). When the robots oscillate between these two
plays, their performance remains good, with the mean time of the switching
case (33.29 seconds) between the mean times of the other two cases. Since the
play-switching case still performs better than the worse of the two plays, we
note that there is no significant detrimental effect on performance.

5 Conclusion

In this paper, we have presented the details of a distributed play-based role
assignment algorithm, which has been implemented on a distributed team
of robots for the RoboCup four-legged league. The algorithm aims to solve
several important general distributed multi-robot challenges, including the
presence of adversaries, task-based temporal constraints, and robustness to
network failure. We have presented experimental results that show that our
role-preserving assignment algorithm allows a team to perform well even when
plays are rapidly changed.

The presented role-assignment algorithm and plays have been tested in
the RoboCup 2005 competition. Our team came in fourth place in a challeng-
ing competition of twenty-four teams. Our team typically rotated through
three well-balanced plays in the first minutes of each game, which allowed
us to see the performance of each play against the specific opponent. As a
form of adjustable autonomy, we could manually change the team’s strategy
at halftime or during a timeout. Our future work includes the investigation



10 Colin McMillen and Manuela Veloso

Def-Str-Ind Def-Mid-Ind Oscillating
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

T
a
sk

 c
o
m

p
le

ti
o
n
 t

im
e
 (

se
co

n
d
s)

Fig. 5. Experimental results for the Defender-Striker-Independent play, Defender-
Midfielder-Independent play, and switching between the two plays. The figure shows
the means and 90% confidence intervals for each case.

of automatic play adaptation in distributed domains and recognition of the
opponents’ state and strategy.

References

1. M. Bowling, B. Browning, A. Chang, and M. Veloso. Plays as team plans for coor-
dination and adaptation. In D. Polani, B. Browning, A. Bonarini, and K. Yoshida,
editors, RoboCup 2003: Robot Soccer World Cup VII. 2004.

2. RoboCup Tech. Committee. Four legged robot football league rule book, 2006.
3. F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, F. Stolzen-

burg, U. Visser, and T. Wagner. Towards a league-independent qualitative soccer
theory for RoboCup. In RoboCup 2004: Robot Soccer World Cup VIII. 2005.

4. B. Gerkey and M. Mataric. On role allocation in RoboCup. In D. Polani,
B. Browning, A. Bonarini, and K. Yoshida, editors, RoboCup 2003: Robot Soccer
World Cup VII. 2004.

5. C. McMillen, P. Rybski, and M. Veloso. Levels of multi-robot coordination for
dynamic environments. In Multi-Robot Systems: From Swarms to Intelligent
Automata, Volume III. 2005.

6. D. Pynadath and M. Tambe. The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of AI Research, 2002.

7. M. Roth, D. Vail, and M. Veloso. A real-time world model for multi-robot teams
with high-latency communication. In Proc. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2003.

8. D. Vail and M. Veloso. Dynamic multi-robot coordination. In Multi-Robot Sys-
tems: From Swarms to Intelligent Automata, Volume II. 2003.


